AD=AL15 582 A!R FORCE INST OF TECH WRISHT=PATTERSON AFB OH SCHOO==ETC F/6 9/2 . .
UNIX l:SED D!VICE DIIVER FOR THE VECTOR GENERAL 3404 GRAPHICS==ETC(U) *
MAR 8. STE!

UNCLASSIFIED AFXY/“S/M/DIM

I3

- ADA115582

i) ﬁ
ELECTEP\
SJUN 151982

DEPARTMENT OF THE AIR FORCE —
AIR UNIVERSITY (ATC) —E -

AIR FORCE INSTITUTE OF TECHNOLOGY

¢
Wright-Patterson Air Force Base, Ohio q s »

et hos been 82 06 14

for public relecse and sale; #8
distribution is unlimited. » |

AFIT/GCS/MA/81D-6

i 3 :
Il !
}fé A UNIX BASED DEVICE DRIVER FOR THE
% VECTOR GENERAL 3404 GRAPHICS
L § DISPLAY SYSTEM
| % THESIS
£
AFIT/GCS/MA/81D-6 Bradley R. Stewart
_ 2nd Lt USAF
E VYRS !
g
& Approved for public release; distribution unlimited P

o s c—m——n - .,

we L gt N Ly e " - - P
; R . . ¥) 5 1S BN - >
BT I B PV RT

AFIT/GCS/MA/81D-6

A UNIX BASED DEVICE DRIVER FOR THE VECTOR
GENERAL 3404 GRAPHICS DISPLAY SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the i
Requirements for the Degree of ;

Master of Science

Acgession For
NTIS GRAaI |
DTIC TAB g
Unannounced
Justificatio
—_—
——
By.
_Iz;i'stribution/
Av.'il%lability VCodesi
5’Avail anéd/or
Dist | Special

i

———]

by

Bradley R. Stewart, B.S.
USAF

: 2nd Lt
Graduate Computer Systems

March 1982

Approved for publlc release; distribution unlimited

Preface .

The purpose of this study was to develop device driver

W e A A IO 2L i ©
*
L]

software for Vector General 3404 Graphics Display System.

The device driver software was installed on a PDP11/60 com-

puter running under the UNIX version seven operating system.
This report discusses all of the major components of

the Sysueh. These include the UNIX peripheral device I/0

processing routines, the hardware interface between the PDP11/60

and the display system, the Vector General 3404 Graphics dis-

play system, and the device driver routines. I belleve this
work will be very helpful to anyone working on peripheral
device I/0 processing under the UNIX operating system.

I would like to thank my advisor, Professor Charles W.

Richard, Jr., for his constant support and encouragement

M e G ML~ sk < e AT I Lt e £ SRR

during this study. Deep gratitude is also expressed to

Dr. J. Lions of the University of New South Wales for his

Nt ot ot WA W

brilliant commentary on the UNIX operating system. And
finally, I wish to acknowledge my gratitude to Mary Mlinnick
for her effort in typing this thesis.

Bradley R. Stewart

- e e A N SN

R e o b < —— . . . - L ‘!’;ﬂ\fl“ﬂ.‘f\!w?‘f

Contents
Page

Preface . . . L) [. . . . - e L} 11

i DI
[T

List of Figures . . L] . . . L] . L] L] L] . . . L] L] * . . viii

; List of Tab les [L[] . - . L] L] L] L] L] . L] L4 L4 L] L] L] L] L] . . x

AbstraCt. L] L] xi

Conventions Used . : : .
; Overview of the Thesis ., . . .

! I. Introduction. v ¢ v ¢ ¢ ¢ ¢« 4 e 4 e e 1

; Background , . . . 1

! Scope and Objectives . e . . [}

' Approach ., . . . 5
. 6
. 8

s o e

.

.

« o
s o o o @
e o o o o
« o o e o
* o o e »
e & s e
e & o o o
e o o o o

II. Preliminary Concepts . . . v v ¢« ¢ o o o o o o 11

' The UNIX Flle System , . . . « v o o « o o o o 11
Ordinary Flles ¢ ¢ v ¢« ¢ o o o« & 11

Directory Files, v v « v o « o . 12

Special Files. ., . S ¥

Fille System Hierarchy e e e s s e e s 12

File Path Names, , , e e e e e e e e 14

4 Flle System Implementati 4 15

! The UNIX I/O System, ., . e+ o s s e e s s e 17

; Basic I/O System Calls e e e e e e e e e 17

' Device Classes ., . ., . . v v v ¢« ¢ o o o« & 19
Device Names . , ., . ., . ¢ ¢ ¢ v 4 o o o 19

Process Management , ., . .,,« . 20

The Proc Structure . ., , . . . v v o« o o & 20

_ The User Structure , ¢« o o « o o« 21
. Summary, e e e e e e e .. 22

III. Peripheral Device I/0 v v v v v v o o o = 23

Flow of Control During I/0 Processing. . . . 23
Processing User Program I/0 Requests , ., . 25
The User Program and I/0 System Calls, 26

The System Trap Mechanism, ., .,
. UNIX Trap Handler Routines ., .
System-Call Switch Table , ., .
I/0 System-Call Handler Routines

T T PR e s e s it e A
i e . .
B ey S PO . R - L e

e & & & o o o o e e o o
(W1]
w

open , ¢« ¢ 4 e 4 e e e e 33

Close, , . s 4 e s s e s 4 e e
Read and Write 36
: Stty and Gtty. . . C e e e e e 37
, Device Switch Tables ., 38
A) Summary . . e e e e e e 42
~ Processing Peripheral Device Inte errupts. . 42

i‘ 111

R S

“

Iv.

v.

VI.

Contents

Peripheral Device Events
The System Interrupt Mechanism . .
The UNIX Interrupt Handler Routine
SUMMATY. ¢ &+ « ¢ ¢ o o o s o o o o o

Overall Description
Functional Description of Major Display
System Components . . e e o .

Computer/Display System Interface.
Graphic Processor Unit
Refresh Buffer Unit . . .
Display Control Unit . . .
Vector Generator Unit. . .

Font Generator Unit. .
Monitor Control Unit . .
Display Monitors
Display System Input Devices
Options. . . e e e .
Display System Registers e e e e
Data Tablet Regilsters. . . .
Function Swiltch Box Reg*sters .
Alphanumeric Keyboard Reglister .
Summary. . .« ¢« ¢« ¢ ¢ s 6 e s e e

¢ & e ¢ e s o o

The PDP11/VG3404 Hardware Interface . . .

Accessing the Interface Registers. . .
The Interface's Eight I/0 Instructions
Channel Communication.
The DMA Channel. . . e s e e e s
The Interrupt Channel . 0 .
The Programmed Input/Output Channel
SUMMATrY. « ¢ « o o o ¢ o o o o o o o

The VG Device Driver.+ ¢« ¢ ¢ o «

Requirements . . e e
Original Requirements .« e .
Requirements for AFIT's VG De

Overall Deslign + .« .

Implementation
User Level Implementation.

The GPU Minor Device .
Open /dev/gpu . .
Read /dev/gpu .
Write /dev/gpu.
Stty /dev/gpu .
Gtty /dev‘gpu .

(]
o
e o o ¢ s o o o o Fe o

s e o ¢ o s G o
s

*« o e s s e v e s e .
*® @ & o & ¢ o o o

*» & ® e
e o e+ e .

e ® 8 8 5 8 e * 2 & & o e s o o

[y

e e o ¢ & s e s v A e

e e o & » e o

(1]

e o o o o o o e o H e o

The Vector General 3404 Graphics Display System

e & & & * e * =

* e e o s & o

it

- pibadte wwelliy

AW s

Contents

Close /dev/gpu

The Data Tablet Minor Device.
Open /dev/dtb.
Read /dev/dtb. . . .
Write /dev/dtb . . .,
Stty /dev/dtb.
Gtty /dev/dtb.
Close /dev/dtb

The Alphanumeric Keyboard Mino

Device. . . c s e
Open /dev/kbd. e e e e
Read /dev/kbd.
Write /dev/kbd . . ., .
Stty and Gtty /dev/kbd .
Close /dev/kbd . . .

The Function Switch Box Minor

Device. . . .
Open /dev/fss e e e e
Read /dev/fss.
Write /dev/fss . . .
Stty and Gtty /dev/fss
Close /dev/fss

The Device Driver Routines .o .

¢ ¢ o o @ o Fl e o e o 2 e o o

Include Files.'
Global Data St”uctures
The UNIX proc and u
Structures
The vgunit Array . . .
The VG Minor Device
Switch Table
Common Procedures. . . .
PIN and POUT . .
gpwalt and gpurestart
putc and gete. . . .
passc. . e e .
sleep and wakeup . e .
psignal.- . . .
fuiword and SUlWOPd
Major Device Routines.
vgopen
vgelose.
vgread . .
vgwrite. . .
vgioetl., . .
vgint. .
Minor Device Routines
GPU Routines . .
gpopen . .
gpclose. .
rtread . .

s s e 0

.

e o & o
e e e o

104
105
105
106
106

Contents

o

Page
o gpwrite. 107
F vgsgtty. 107 i
[Data Tablet Routines 110 ;
| dtopen:« 4 . . . 110 i
D dteclose. 110 :
P dtread+ . . . 111
oo dtwrite.+ . . 111
i fskbdtsgtty. 111
dtintr o . 112
_ The Alphanumeric
: Keyboard Routines. 113 :
kbopen 113 iy
kbclose. + ¢ v v ¢ ¢ .+ & 113 !
kbread 113
. kbwrite. 113
o : kbintr . . . e e e e s 114
- The Function Switch
Box Routines 114
, fsopen 114
v fsclose. 114
b fsread . « ¢« ¢« . 4+ . . 115
fswrite. 115
fsintr « . . . 115
SUMMATY « o« « v & o o o o o6 o o o o o o o 116

i VII. Device Driver Updates. . . ¢« v « v ¢ & « o o o+ 117

Space Limitations e e e e e 117
Removal of Level One Graphics
Support e e e e 117
Removal of Code for Timnouts e e e e e 118
' Removal of Code for Light Pen 118
Display System Differences. . . e v e e e e 119
) Differences Between UNIX Versions i
> Six and Seven 4 . . 4 4 e v o. . . 119
k{ SUMMary « « o o o o o« o o o ¢ « o o o » 2 s 121
= |
A VIII. Installing the VG Device Driver. 122
,j Creating the Special Filles. . . .« o e v e 123
; . Relocating the Driver Source Files e e e e 126
; Producing and Archiving the Driver .
‘ Object Fille « o e s e 127
Editing the Character Device Switch
Table c e s e e e e 129
: Editing the Interrupt Vector File e e e e e s 131
! Producing the UNIX Object File /unix.vg . . . 132
; Restoring the Changed UNIX Files., ., . 134
' < Rebooting the System from /unix.vg. 135
.. SUMMArY « ¢« « ¢ ¢ o o o o s o o o « o o o o o 135

vi

~ n -
. . A T »

Contents

IX. Saftware Testing . . « « o ¢ o o o o o o o o o o 136]

GPU TesStS « « v v ¢ o o o o o o o o o o o o o 136 ;

Data Tablet TeStS « v « ¢ o o ¢ o o o o o o 141

Keyboard TestS. « « « « o o o o o o o o o o o 143 i

Function Switch Box TesSts . « ¢ o « o o o o o 144

SUMMArY . ¢ ¢ & ¢« ¢ o o o s o s e @ e s 4 e o 145 :
X. Conclusions and Recommendations. . . « « ¢« « o & 146

Blblilography .« ¢« « & &« ¢« o o o o o s o o o s o o o o 150

Appendix A: Listings of UNIX Source Filles
/sys/h/proc.h and/sys/h/user.h. 152

Appendix B: Listing of UNIX Source File
/8YS/Conf/1l.S.VE: + « o « o o o o o o o 161

Appendix C: Listing of UNIX Source Fille
/8YS/CoNnf/C.CoVEe v o o o o o o o o o o 165

Appendix D: Listings of Driver Source Filles
/sys/h/vg.h and /sys/dev/vg.c . + « « . . 178

Appendix E: Listing of File /sys/coﬂf/makefile. . e . 191

Appendix F: Creatlion of Speclal Files for the VG
Graphics Device . . . « ¢ ¢« ¢ « o « o« o 195

Appendix G: Major System Directories. 196

Appendix H: Rebooting the System From
UNIX Object File /unix.vg « + + & 197

vita . . - L LJ L . L4 L L] L] * L] . . . - . . L] L3 200

T
;

TTFre e o T

List of Flgures

Figure Page

1l Organlzation of Major System Components 9

2 Flle System Hierarchy . . « ¢ ¢ ¢ ¢ « o o o« & & 13

: 3 File System Data Structure « « « o« & 16

; b Flow of Control During I/O Processing 24
| 5 1/0 Processing Routines and Control !

, Transfer Mechanisms+« ¢ ¢ ¢ ¢ o o o =« 25

6 System-Call Trap Vector . . . ¢ ¢ ¢« ¢« ¢ « « o« & 28
f 7 System-Call Switch Table « « + . . 32
8 Routines For Processing an open(2)
System Call & ¢« ¢ ¢ o o v s 4 e o s o 33
9 Routines For Processing a close(2)
System Call . . ¢« ¢ & ¢ 4 ¢« ¢ 4 e e o s e 0 s 35
10 Routines For Processing the read(2)
: and write(2) System Calls « « « « « « « 36
; 11 Routines For Processing the stty and
| gtty System Calls . « « « ¢ « « &+ o « o« o« « « « 38
12 Main Routines Called During Peripheral
I/0 Processing & ¢ ¢« ¢ v ¢« o o o o « . U3
13 Interrupt Processing Routines and ‘
, Control Transfer Mechanism 4y
?1] 14 Interrupt Vector for VG Display System 46
?% 15 Display System Organization U9
P4
L 16 Input Device Registers +. « + . . . 55
gy * 17 Interface Communication Channels 59
- 18 Using a Dummy Structure to Access the
Contents of the Interface Reglsters 63
19 Communication Channel Usage « . « « « ¢« =« « . . 66
' 20 McCallum's Two Levels of Graphics Support . . . 75

: f 21 Device Driver Design . . + « « « « 4 « o« o« « « 179

Figure Page

22 The vgunit Data Structure + . . . 95
23 Design of the vgsgtty Routine 108

24 Location of Relevent Files and Commands 124

,‘
i

'
5
."
=
&

;(ix

List of Tables

B Table Page
f; I Stty Special Functions « « . . ¢« . .+ o .
II Data Tablet Interrupt IDs . . « « ¢« ¢« « « » . . 86

I1I Data Tablet Interrupt Masks 87

i e
A atimr - A aa

B Gt
A v

e , - MRIAIRINGALL SO0 e

B SN P R i el Tl

AFIT/GCS/MA/81D-6

\ Abstract
\

N

Display System was installed under the UNIX version seven

A device driver for the Vector General 3404 Graphics

operating system on a PDP11/60 computer. This was accom-
plished by modifying an exlsting device driver which was de-
signed to run under verslon slix of the UNIX operating system.

The major toplcs addressed in this report are the C
programming language, peripheral device I/0 processing under
UNIX, the hardware interface between the PDP11/60 and the
graphlcs display system, the graphics display system itself,
and the existing device driver software.

Structure charts were used to document the design of the
UNIX peripheral device I/0 processing software and the design
of the device driver software. Modifications to the original
device driver were easily accomplished due to the top-down
modular design of the original software. UNIX provided a
straight-forward interface for adding the device drlver soft-

ware to the system.

PR

xi

A UNIX BASED DEVICE DRIVER FOR THE
VECTCOR GENERAL 3404 GRAPHICS DISPLAY SYSTEM

I Introduction

The problem addressed in this thesls investigation was the i
development and installation of device driver software for a vector
General 3404 Graphics Display System (hereafter referred to as
the VG graphics device or the VG display system).

The software was installed under the UNIX version seven

operating system running on a PDP11/60 computer. This effort
was Intended as a first step in the development of a high-
level interactive graphics system for the PDP11/60 running
under UNIX.

This chapter presents the background to the problem,
scope and objectives; approach taken, conventions used, and

finally an overview of the remalnder of the thesis.

Background
In July, 1981 the RSX-11M operating system running on the

PDP11/60 computer at the Air Force Institute of Technology
(AFIT) was replaced by the Bell System's UNIX version seven
operating system. This replacement was justified by a number i
;f desirable UNIX features not offered by the RSX-11lM operating |
system.

First of all, UNIX provides more software tools for

education. It supports several different programming lan-

guages and provides excellent facilitles for document

Rtk ude S S i M it kit An e o el Ny WS> . o

preparation.
] UNIX also provides very powerful tools for program
f% development. An example 1s the UNIX capability of creating
a "pipe" for inter-process communication. In a pipe, as
output 1s generated from one program 1t 1s immediately made
available as input to the next program (Refs 2:2; and 13:8).
Therefore, a pipe facilitates executing programs together
as a complete system. That 1is, a large software system can
be designed and developed in small pieces, then brought
together and executed in a pipe.

The UNIX system 1is totally self supporting. All UNIX
software is malntained on the system. With only 10,000 lines
of code, the system can easily be understood and maintained

by one person. Of the 10,000 lines of UNIX code, less than

ten percent 1s written in assembly language. The remaining
ninety percent 1is written in the general-purpose procedural
language "C". This high level language enhances system

’ understandability and maintainability. ; f
\ Ritchie and Thompson list the following desirable UNIX
features seldom found even in larger operating systems

(Ref 13:1).

B T Y

1. A hierarchical file system 1lncorporating

‘demountable volumes.
2. Compatible file, device, and inter-process I1/0.

3. The ability to initiate asynchronous processes.
4, System command language selectable on a per
user basis.
5. Over 100 subsystems, including a dozen languages.
' 6. High degree of portability.

Iy Lk a 3
. W W S e aa

T " ahi et i B i i M R o ch i SN BN At e

These features make UNIX simple, elegant, and easy to use.

With the upgrade to UNIX, it became necessary to upgrade
the graphics package on the PDP11/60. FGP34, a graphics
package based on ACM/SIGGRAPH's Core System standard proposal
(Ref 15), is the package that ran under the RSX-11M operating
system. Thils package 1s not readily compatible with UNIX.

In order to run FGP34 under UNIX, a new device driver would
have to be written. This could be very difficult to
impossible depending on how strongly the FGP3U4 software is
dependent on the RSX-11M operating system. Another issue
that must be considered is that FGP34 does not support com-
plete device 1ndependence. That 1s, it only runs with the
Vector General 3400 series display systems. Therefore, when
other types of graphics devices are installed on the PDP11/60
in the future, the FGP34 will not support them.

As a result of these problems and limitations, it was
declded to acquire a better graphics software system, e.g.,
one based on the Core System that 1s operating system inde-
pendent and device 1ndependent. One good candidate that has
been identified is GRAFLIB, a graphics software system
developed by the Lawrence Livermore Laboratory (Ref 6).

No matter which high level graphics software system 1s

'finally implemented, a new low level device driver had to be

installed under UNIX for the VG graphics device. When this
investigation was begun, the author knew of no VG device drivers

written to run under UNIX versicn seven. At the same time,

1t was known that two different VG device drivers did exist

for UNIX version six. One had been developed at The

University of Kansas. Another had been developed at The
University of Texas at Austin. In order not to "re-invent"
the wheel, it was declded to modlfy one of these exlisting
drivers to run under UNIX version seven.

The driver developed at the University of Texas at Austin
was chosen because of its straight forward, top-down design
and because the driver source code was easy to obtain. The
driver was written by Douglas McCallum in support of his
thesls on machine-independent interactive computer graphics
(Ref 12). It was designed for the UNIX version six operating

system running on a PDP1l1l/34 computer.

Scope and Objectives

This thesis investigation was devoted to updating and in-
stalling McCallum's VG device driver on the PDP11/60 computer under
the UNIX version seven operating system.

One maln objective was to, as much as possible, use
McCallum's device driver software "as is". Modifications
were only made to make the driver compatible with UNIX version
seven and to meet the space limitations of AFIT's PDP11/60
computer. Also, since McCallum's driver did not support the
VG's data tablet input device, software was developed and
.incorporated to support AFIT's data tablet.

Another maln objective was to document how the VG driver
works. This included an explanation and description of the
UNIX operating system, the hardware interface between the

PDP11/60 and the VG graphics device, the VG graphics device

enikminchit Jkas

e G AP i et . T
=p T ———

“ . - i L MERgt RO vz it

itself, and the driver routines.

Approach
This project required a working knowledge of the "C"

programming language, the UNIX operating system (both versions
six and seven), the PDP11/VG3404 hardware interface, the VG
graphlics device at the register level, McCallum's driver
software, and driver installation procedures.

?;1 First, UNIX was studied from a user's point of view to
w?: learn how to use the system. The article "An Introduction

31 to the UNIX Shell" and "UNIX for Beginners — Seventh Edition"
| served as tutorials for this step (Refs 2 and 9). The UNIX
text editor was learned next by studying the article "A

- Tutorlal Introduction to the UNIX Text Editor" (Ref 8).

Next, the "C" programming language was learned by
writing and executing programs that illustrated the major
o features of the language. Kernighan and Ritchie's book

¢ entitled The C Programming Language was used as a tutorial

| during this step (Ref 7). This step was essential since
t ﬁ both UNIX and the device driver are written in "C".
| After learning the basics above, UNIX was studied from
a systems point of view to learn how it deals with device
drivers in general. J. Lions' commentary on the UNIX operating

system, along with listings of UNIX source code, served as

L2 S K

the main tutorial for this step (Refs 10 and 11). The

b

differences between UNIX version six and UNIX version seven

were also studied at thils point.

e R A i iet,

Ving WA ol . a et i s

Study of Vector General documentation provided an
understanding of the PDP11/VG3404 hardware interface and
the VG graphics device at the register level. The most

important of these documents were the Programming Concepts

Manual, the System Reference Manual, the PDPll Interface
Specification, and volume one of The Series 3400 Technical

Manual (Refs 17-20).

S Lo B N L a

<o

The knowledge obtained from the above studies helped

S

the author understand McCallum's driver software. Some help 3

was also recelved through telephone conversations with

Douglas McCallum. Once the driver was understood, it was
updated to run under UNIX version seven. Next, the driver

was 1installed on the system using the articles "Regenerating

L e Lo M Ao TN A LI W . 0 A 5 2y o

System Software" and "Setting Up UNIX" as a guide for in-
: stallation procedures (Refs 4 and 5).
The final step was the development and incorporation of

routines to handle the VG data tablet input device.

0 W W Lo e 2 e

McCallum's routines for the VG function switches and keyboard

input devices served as a guide for writing these routines.

; Conventions Used

A few conventions are identified here that are used
.throughout the report.
All references to UNIX system commands are specified

by the command name followed by a section number in paren-

thesis. The section number refers to the section of the

UNIX Programmer's Manual (Ref 1) where the command is defined.

ot o

o &‘,A

L

=

i e o e 2l s e PO o+ VRS g W i prAng

For example, cp(l), refers to the copy system command which
is found in section 1 of the UNIX Programmer's Manual. This
system was adopted because the UNIX Programmer's Manual does
not have page numbers.

Another convention that merits explanation 1s how com-
puter code 1s cited in this report. Two types of code are
cited in this report; a stream of UNIX system commands

entered from a terminal and listings of "C" language statements

taken from computer programs. The following UNIX system command

stream 1llustrates how a stream of UNIX command statements

cd /sys/conf

cp /sys/dev/vg.c/sys/dev/vg
mkdev_i vg

cp ../h/param_i.h ../h/param.h
a - vg.o

rm /sys/dev/vg

#

~I W1 =W
. . L] L] . . -

1s cited in thls report. First, the statements are numbered
sequentially to provide a means of referencing each indivi-
dual line. If only one statement 1s cited then 1t is not
numbered. The symbol "#" 1s a prompt sign printed by the
system. Following the prompt sign the user types a command
statement followed by a carrlage return. The system executes

the command then prints another "#" to prompt the user for

‘more input. Lines not beginning with the "#" prompt, as with

lines four and five above, represent messages or text printed
during the execution of a command.
The "#" prompt 1s also an indication that the user 1is

logged in as the super-user. The super-~user is granted

MRS R

i

ey e o

R A

CETT e e T

TR LTI S Y R ,a'e;;uw-., e

i e s

special access rights and priviledges that other users do
not receive. These rights and priviledges allow the super-
user to make any necessary changes to the system, such as
install a new device driver.

The "C" language statement listing

1. dtclose()

2. { extern struct cdevsw vgdev[]; 1
3. POUT(dtb, 0);

y, , while (getc(&vgunit[1] .i0) >= 0);

5.

i1s an example of how portions of compufter programs are cited

in the report. The statements are simply numbered sequentlally

8o each individual line can be referenced easily.

Overview of the Thesis

The block diagram depicted in Figure 1 orients the reader
to the system components and the communication paths between
them. The main body of the thesis descrlbes these components
and communication paths in detail. The remainder of the
report 1s outlined below.

In order to establish a common base to work from, some
basic concepts of the UNIX operating system are presented in
chapter two. This includes a description of the UNIX File
.System, the UNIX I/O System, and process management.

Chapter three describes in detail how UNIX processes

user program requests for peripheral device I/0, how it

deals with device drivers, and how 1t processes interrupts

from peripheral devices.

RTINS ==

il e 3

sjuauodwo) wajzsdg JofBW JO UOT3IBZTURIJIQ

‘T 914

wa3sdg
Letdstq
DA

103923 3dnaaaijur

3sT7 Aetdstq

Ja9sq

09/11ddd
')
r'lw_
LNI
IBATJIQ XINQ weJadoad
0Id a0TAaQg [Jasq
01d 90BJaa3uU]
aaempaey
VId
PS> B3Iy e3IB(Qg
YiNd I98N

RIS A

)

e

S A WO B £ Wl BT Silanis ol TS P

The VG 1s described down to the register level in
chapter four. Thls 1s necessary because the device driver
deals mainly with reading and writing the VG's internal
reglsters.

Chapter five 1s a description of the hardware interface
between the PDP11/60 and the VG graphics device. All data
and control communication between the PDP11/60 and the VG
take place via this interface.

The device driver software 1is documented in chapter six.
This 1ncludes a speciflication of the overall requirements,

a description of the software design, an a detailed discussion
of implementation details. The discussion on driver imple-
mentation includes both user level implementation and docu-
mentation of the driver routines in their final state, e.g.,
after updating for UNIX version seven and trimming to meet
space limitations.

Cbapter seven describes the changes made to McCallum's
original driver to make it compatible with AFIT's system.

The procedure for installing the device driver 1is des-

cribed in detall in chapter eight.
The software testing methodology is described in chapter

nine. All of the tests performed on the driver software are
also incluaed.
Finally, conclusions and recommendations are given in

chapter ten.

T e B o e ,M

SR AR A

TR

I1I Preliminary Concepts

A detalled knowledge of certaln aspects of the UNIX
operating system is required for developing and installing
peripheral device driver software on the system. In order to
gain this detalled knowledge, the basic concepts must first
be understood.

This chapter presents a discussion of some basic UNIX con-
cepts. Emphasis 1s placed on those concepts that will aid the
reader in understanding the more detailed UNIX concepts presented
in subsequent chapters. The main ideas covered here are the UNIX

file system, the UNIX I/0 system, and process management.

The UNIX Flle System

Ritchie and Thompson have stated, "the most important role
of the system is to provide a file system" (Ref 13:2). UNIX
supports a hierarchical disk based file system compcsed of
three different kinds of files: ordinary, directory, and
speclal. Each of these files 1s stored as a one dimensional
array of bytes. Structure within these flles 1s controlled by
the programs that use them and not by the system.

Ordinary files, dlrectory files, speclal flles, file
system hierarchy, file path names, and file system implementa-
tion are discussed in this section.

Ordinary Files. Ordinary files can be created by any

user. They contain whatever the user puts in them, e.g., data,

source programs, object (binary) programs, etc. Access per-

R i T

T
B P U

A AR 4

i Sndadl g

mission to ordinary files 1s controlled by the file owner

and/or by the super-user, i.e., the person in charge of main-
taining the entire system.

Directory Files. Directory files are maintalned by the

system. They can only be written by the system. A user pro-
gram may not open a directory file for writing. Directories
may contain names of ordinary files, special files, and other
directory files. For each file name entry, the directory
maintains a pointer, called the i-number (for index number),
to the information actually describing the file. 1In other
words, each directory entry provides a mapping between a file
name and the actual file. The i-number will be descrilbed
later in detail.

Special Files. A special file is a file that has been

associated with an I/0 device. By UNIX convention, these files
all reside in directory /dev. User programs access I/0 devices
through references to the special files associated with the I/O
devices. User programs may open, close, read, and write specilal
files as 1f they were ordinary disk files. When special files
are referenced from a user program, the system calls the appro-
priate device driver routine to activate the associated device
(Ref 13:3). This 1s a key concept in this thesis because the
éG graphics device has four of these =pecial files assoclated
with 1t for I/0 purposes. These four special files are des-
cribed in detail in chapter six.

File System Hierarchy. Directories are maintained hy

i v .
A e e e A

beta

gamma

alpha sigma

deta

Fig 2. Fille System Hierarchy

-the system as a hierarchy

in the form of a rooted tree. An

example of such a rooted tree is illustrated in Figure 2. 1In

this figure, as with the UNIX file system, the root directory

is denoted by a slash character, "/". The root directory

contains the files alpha and sigma. Alpha is alsc a directory

file containing files beta and delta. Beta 1is a directory

file containing file gamma. All non-leaf flles in the rooted

tree are directory files.

be elther ordinary, speclal, or empty directory files.

Files delta, gamma, and sigma could

A aim - oA

Many of the higher level directories in the file system

hierarchy are reserved for system use. They contaln system
commands, UNIX source and object files, utility programs, etc.

The super user adds directories to the file system for
each user. These directories may be added to any level of the
hierarchy. They are created for the user's own files. Users
manage files within their respective "home" directories through
the use of system calls. They may do such things as add and
remove files from their own directories. They may also create
and ménage sub-directories attached to their original home
directories.

File Path Names. A file may be specified to the system

in terms of 1ts path name. Ritchie and Thompson describe this

concept well.

"When the name cof a file is specified to the
system, it may be in the form of a path name,
which 1s a sequence zf directory names separated
by slashes, "/", and ending in a file name. If
the sequence begins with a slash, the search
begins in the root directory. The name /alpha/
beta/gamma causes the system to search the root
for directory alpha, then search alpha for beta,
finally to find gamma in beta. Gamma may be an
ordinary file, a directory, or a special file.
As a limiting case, the name "/" refers to the
root itself." (Ref 13:3)

. If the path name does not start with a "/" then the
system begins searching in the user's current directory. When

a user logs onto the system, the user's assigned home direc-

tory becomes the current directory. The current dilrectory may

be changed through use of the change directory system call, cd(1l).

H N
. B S Uy

File System Implementation. A detalled description of

the implementatlion of the UNIX file system is given by
Thompson and Ritchie (Ref 13:6-7 and 16:7-9). The main ideas
are presented here.

The system maintains a list of file definitions called
the "i-1list". This 1list resides on secondary storage
(usually on disk) and consists of one "i-node" for each fille
that exists in the file system. The integer offset of an
i-node in the i-1ist is called the i-number. It 1s used for
referencing the i-node and 1is stored in a directory along with
the file name associated with the i-node.

Each i-node contains all the iInformation needed to define
a file, such as; the type of file, access permissions, the
number of links to the file, etc. (Ref 13:6) For non-special
files, the i-node contains information about where the file
resides on disk (Refs 13:6 and 16:7). For special files, the
i-node contains a device class and a device name. These are
used by the system to invoke the appropriate device driver
when a user program requests access to a special file.

Figure 3, adapted from Thompson (Ref 16:8), shows the
data structures maintained by the system during flle access.
Each user process 1is allocated an open flle table. Thils table
éontains polnters to entries 1n the system open file table.

As a user process 1s swapped 1n and out of core, 1ts open file
table 1s swapped along with it. The system open flle table

and the active 1-node table are always resldent in core. The

1-11ist resides on disk.

et ki T SR e Y

aanjyonaqas eaeq waiskg o11d "€ BTd

Swy3TI03TY e
> duyddey o—p 91Td
aTTd
SpON-T

wajshs oTTd

/a3d
al3eao3g
AI1BpPUODSS
Ax k@\ woqsAg/a9d
9TqeL | aTqBL JuUapTsay
9PON-I 9AT3OY aTTg uadp
A\ 138 /a8d
paddemg

9TqBL 9TTd
usadp assp aad

hanfadies & Shal Rl ol it 2

-)
O Lhmaimi £ A

16

To access an existing file, a user program must first
"open" it via the open(2) system call. The file's pathname
is specified as one of the input parameters for this call.
The system uses the pathname to search the hierarchy of
directories until the specifled file name is found. Next,
the i-number stored in the directory with the file name is
retrieved. The i-number is used to access the appropriate
i-node. The system checks the flle's access permissions
(stored in the i-node) to verify that the requested access is
legal. If it is, the system coples the disk verslon of the
i-node into the active i-node table. A pointer to this active
i-node table entry is entered in the system open tile table.
A pointer to this system open file table entry 1s entered in
the user's open file table. The integer offset of the entry
just made in the user's open file table 1is called a file
descriptor. It 1s passed back to the user program. The user
program passes the file descriptor as an input parameter on

all subsequent system calls requesting access to the open file.

The UNIX I/0 System

This section begins with a description of basic I/0 system
calls. This is followed by a discussion of device classes
gnd device names which are used during peripheral device I/0
processing.

Basic I/0 System Calls. A user program requests I/0

through the use of the open(2), close(2), read(2), write(2),

stty, and gtty system calls (see 1loctl(2) for the stty and

17

A e e 4

B UL U QU

gtty system calls). The open(2), close(2), read(2), and
write(2) system calls may be used on both ordinary and
speclal files, while the stty and gtty calls are only used
on special files. The open(2) call opens a file for access
while the close(2) call terminates access to a file. The
open(2) call passes two parameters to the system; (1) the
path name of a special file and (2) an access mode, If the
access mode specified is 0 then the I/0 request is for reading
only. If the access mode equals 1 then the request is for
writing only. If it equals 2 then the request if for both
reading and writing. The open(2) call returns a file des-
criptor which must be used in subsequent I/0 requests on the
open file. The close(2) system call passes one parameter to
the system; a file descriptor.

The read(2) and write(2) calls pass three parameters to
the system; (1) the file descriptor obtained from the open(2)
system call, (2) a pointer to a user buffer, and (3) the
number of bytes requested. With the read(2) system call, up
tovthe number of bytes requested are read into the user buffer.
The system returns the number of bytes actually read. With
the write(2) command, the number of bytes requested are written
from the user buffer to the specified file. The number of bytes
actually written is returned to the user program.

The stty and gtty commands are used to set and get character-
istics of peripheral devices. These system calls each pass two
input parameters to the sytem; (1) a fiie descriptor and (2) a

pointer to a user buffer. The contents of the user buffer

L1
'-' ‘
b |
A

N
-
k. ¢
-

ey RO ey ,~1rwmm

specify which device characteristics to set or get.

When a user program invokes one of these basic I/0
system calls on a special file, the operating system activates
the associated peripheral device vla device driver routines.
The device class, part of the device name, and the type of
I/0 system call determine which device driver routine is in-
voked. The appropriate device driver routine performs the
requested I/0 function on the peripheral device then returns
control to the operating system which then returns control to
the user program, passing back the appropriate data. Device
classes and device names are now discussed.

Device Classes. Each I/0 device falls into one of two

categories; block oriented or character oriented. Block
oriented devices are devices such as disk and tapes which deal
with 512-byte blocks. All other devices are considered chara-
ter oriented. Therefore, the VG graphics device 1s a character
oriented device.

Special files assoclated with block I/0 devices are marked
as block oriented, while those associated with character devices
are marked as character oriented. This information is carried
in each speclal file's i-node.

Devlice Names. The system assigns a device name to each

‘special file. It is stored in the special file's i-node.
The device name 1s made up of a major device number and a
minor device number. These are stored in the i-node as a 16
bit computer word with the major number in the high order 8

bits and the minor number in the low order eight bits (Ref 14:1).

19

I e D

When a user program requests access to a specilal file,
the file's device class, major device number, and the type of
I/0 request determine which device driver routine to invoke.
The specilal file's minor device number 1is passed to the device
driver routine as an argument (Ref 16:5).

Any meaning assoclated with.the minor device number is
assigned by the device driver routine itself. For example, if
there are several identical I/0 devices on a system, the minor
device number could be used to indicate which one of the I/0
devices to activate. Another example would be I/0O devices com-
posed of several sub-devices. In thils case, the minor device

number could be used to indicate which sub-device to activate.

Process Management

Ritchie and Thompson identify an "image" as a computer
execution environment and a "process"™ as the execution of an
image (Ref 13:8). Roughly speaking, a process may be defined
as "a program in execution" (Ref 10:7-1).

UNIX allocates two data structures for each process on
the system. They are the '"proc" structure and the "user"
structure. These structures make up part of the overall pro-
cess 1lmage. A complete listing of each 1s included in Appendix
A,

The Proc Structure. The proc structure for each process

1s permantly resident in core. Thils structure is defined in
the UNIX source file /sys/h/proc.h. It contains information
that must be accessible at any time, especially when the main

part of the process image has been swapped out to disk. Lions

20

el s . Al b

describes the inforhation carried in the proc structure in his

commentary on the UNIX operating system (Ref 10:7-2).

The User Structure. The user structure assigned to each

process 1s swapped in and out of core with the swapable portion
of the process image. At any given time, the only user struc-
ture in core 1is the one assigned to the process currently belng
executed. While in core the user structure is referenced as
the "u" structure.

1he u structure 1s defined in the UNIX source file
/sys/h/user.h. It contalns such information as user identi-
fication, parameters for I/0 operations, file access control,
system call parameters, and accounting information.

The u structure 1s accessed often during execution of
a process. Each element of the u structure is accessed by
stating the name of the structure, followed by the structure
member operator '.', followed by the element name (Ref 7:120).

For exanmple,
u.u base

is a reference to the element u_base of the u structure.

Both the UNIX operating system and the device driver
routines access the u structure often while processing peri-
éheral device I/0 requests. The individual elements of the u
structure needed for 1I/0 processing are described throughout

this report as needed.

21

T

vy

Cal haeduab M

rTTwR

| g

g O

v NPT G A YW 1oy P g
N . . . L 1
e ®

R R TTIE Sr e ——

Summary
Some basic concepts of the UNIX operating system were

presented 1n this chapter. Emphasls was placed on those UNIX
concepts that pertain to this thesis project. With these
basic concepts as a foundation,'the next chapter describes
how UNIX processes user program requests for peripheral device

1/0.

22

It 30

M, a8 - o > A 5§ b g oA

B Yy

III Peripheral Device I1/0

The UNIX operating system 1s the focal point for all
peripheral device I/0 processing. This chapter 1is a dis-
cussion of how UNIX processes user I/0 requests and peripheral
device interrupts. Emphasis is placed on character oriented
peripheral devices. This will help the reader to understand
how UNIX deals with the VG graphics device.

This chapter 1s divided into three sections. The first
presents a high level discussion of the flow of control during
I1/0 processing. This is intended to orlent the reader to the
overall role of the UNIX operating system in peripheral device
I/0 processing. The next section describes how user program
I/0 requests are processed. The last section describes how

peripheral device interrupts are processed.

Flow of Control During I/0 Processing

UNIX controls the processing of all user I/0 requests and
all peripheral device 1Interrupts. The block dlagram in
Figure 4 1llustrates the overall flow of control during I/O
processing. When a user program requests I/0 on a peripheral
device, control 1s transfered to UNIX. First, UNIX executes
the device independent routines needed for the I/0 request,
then it determines which device driver routine to invoke for
the required device dependent processing. Next, the appro-
priate device driver routine 1s called. It performs the

requested I/0 function then returns control to UNIX. UNIX

P PHINT

e eem o W A A = ok

User Program 1

UNIX

Peripheral
4 Device

Device Driver
Routines

Fig 4. Flow of Control During I/0 Processing

“finishes processing the I/0 request then returns control to
the user program. In terms of the components of Figure 4, the

typlcal flow of control for processing a user I/0 request is

1,2,3,2,1.

When a peripheral device signals an interrupt to the PDP1l1
processor, control 1s transfered to the interrupt vector in
UNIX. The interrupt vector first transfers control to the UNIX

dssembly language interrupt handler which performs device

independent interrupt processing.

interrupt handler, which 1is part of the device driver software,
18 invoked. The device dependent interrupt handler processes

the 1interrupt then returns control to UNIX.

24

Next, the device dependent

UNIX returns con-

TTOT T s s ey

o s+ SR WL, Lk N AL

’ User Program

User Program :

1/0 System
AN Call

System Trap Mechanlsm

1 UNIX Trap
4 Handler
Routines
UNIX I System-Call Switch
N\ System Call
Handlers

: Device Switch Tables

DevicevDriver Device Driver
Routines == Routines

Fig 5. I/0 Processing Routines and
Control Transfer Mechanisms

trol to whoever had it at the time the interrupt occurred.
In terms of Figure 4, the flow of control for processing a

peripheral device interrupt is 4,2,3,2.

Processing User Program I/0 Requests

The portion of Figure U4 dealing strictly with processing
user I/0 requests 1is expanded in Figure 5 to show more detail.
This figure illustrates the groups of routines called to
process an 1/0 request and ldentifies the mechanisms used to
transfer control between each group of routines. Control is
transfered from the I/0 system call to the UNIX trap handler
routines via the system trap mechanism; from the UNIX trap

handler routines to the UNIX I/O system call handler rodtines

25

¥

R P

via the system-call switch table; and from the UNIX I/O
system call handler routines to the device driver routilnes
via the device switch tables. The remalnder of this section
describes each group of routines and each switch mechanism
starting with the user program and ending with the device
switch tables. Much of this information is found in Lions'
commentary on version six of the UNIX operating system
(Ref 10:Chapters 9, 10, 11, 12, 15, 18, and 19). However,
due to differences between UNIX versions six and seven some
of the information presented here was obtained directly from
the UNIX version seven source code. When thils is the case,
the appropriate UNIX version seven source file is referenced.
The device driver routines are not described in detail
here. Chapter six is devoted to a detalled description of the
VG device driver routines.

The User Program and 1/0 System Calls. A user program

requests peripheral device I/0 via the I/0 system calls
open(2), close(2), read(2), write(2), stty, and gtty (see
foctl(2) for stty and gtty). These I/0 system calls each com-
pile to a trap instruction followed by the call's input
parameters listed in the order that they were specified in the

call. For example, the system call

26

read(fildes, buffer, mode)

complles to

- et

. trap 3

fildes

buffer

mode
The low order byte of the trap instruction is an integer
system-call identifier which uniquely identifles which system
call caused the trap (Ref 10:10-2). In the example aktove,
the number 3 represen':s the system call identifier for a "read"
system call. Later, the system call identifier is used as

an index into the system-call switch table to fetch the

address of the appropriate system-call handler routine.

The System Trap Mechanism. Traps occur as the result

of events internal to the CPU (Ref 10:9-3). Several different
classes of system events cause the CPU to trap. Some of the
different classes are bus errors, illegal instructions,
power fallure, execution of a system call trap instruction,
etc. (Ref 10:9-3). A trap vector exists for each different
class of events. All of the trap vectors are defined in the
source flle /sys/conf/l.s. The version of this file used
when the VG graphics device 1s configured on the system,
)sys/conf/l.s.vg, is listed in Appendix B.

When a system event causes a trap to occur, the CPU
immedlately transfers control to the associated trap vector.
This 1s the first step for processing the trap. The trap

vector assoclated with system calls is 1llustrated in

27 | 3

N Y

Execution of a

UNIX Assembly

System Call |—# 34 NleDg —® Language Trap
Trap Handler
New
36 PS
Fig 6. System-Call Trap Vector

figure 6. This trap vector begins at location 34 (octal) of
low core (Ref 10:10-3).
assembly language "start" routine (see line 31, Appendix B).

This is used when booting up the system, then location 34 is

routine. Location 36 contains the new processor status (P3S)
value to be used while handling the trap.

. When the CPU executes a system call trap Instruction,
it immediately loads the program counter (PC) and the pro-
cessor status (PS) word with new values taken from vector

locations 34 and 36 respectively (Ref 10:10-3). The old PC

and PS are automatically saved on top of the system stack.

Initially, location 34 contains the

“overlayed with the address of the assembly language trap

The old PC value is pointing at the first word after the

trap instruction, i.e., the first system call input parameter.
Control is now transferred to the new address held in the PC,
i.e., the address of the UNIX assembly language trap routine
(Ref 10:10-3).

UNIX Trap Handler Routines. The UNIX trap handler

routines consist of the assembly language trap routine located

in source file /sys/conf/mech_i.s and the C language trap routine

fad s

E | located in source file /sys/sys/trap.c.

When the assembler trap routine gets control, it first
saves the new PS on top of the system stack. Lions states,
;.- "it is important to save the PS as soon as possible, before

t it can be changed, since it contains informatlion defining the

type of trap that occurred" (Ref 10:10-3). Next, the assembler

trap routine saves important system registers on top of the

PP

stack so that they may be restored after the trap 1s processed.

o Finally, the C language trap routine is called.

First, the C language trap routine processes the parameters

specified in the I/0 system call. These parameters are fetched

from the user program string in the followling ways (Ref 10:12-2):

1. via the specilal register rO;
2. as a set of words embedded in the program
. string following the "trap" instruction;
3. as a set of words in the program's data area.

A et Am mea

The open(2) system call parameters are passed from the

user program using method 2 above. That 1s, the two para-

meters specified in the open(2) call are picked up from the

e e ey , T T

program string following the trap instruction. This 1is
accomplished using the o0ld PC value (fetched from the system
stack) which 1s pointing at the parameter 1list. The para-
meters for the other five I/0 calls are passed using a com-
bination of methods 1 and 2 above. The first parameter of

these five calls is placed in special register r0O when the

trap instruction is executed. The remaining parameters are
plcked up from the program string following the trap instruc-
tion.

The C language trap routine fetches all the system call
input parameters by first fetching the unique identifier for
the system call from the low order byte of the trap instruc-
tion (Ref 10:12-2). This integer identifler 1is used as an
index into the system-call switch tahble (described later) to
retrieve two pieces of information; the total number of

' parameters required for the system call and the number of
those parameters that were passed throuzh special registers.

' After fetching all the parameters, the C language trap
routine places them in the argument array, u.u_argl], so that
they may be retrieved later by the UNIX I/O system call
handler routines. Depending on which I/0 system call is made,

u.u_arg[] contalns one of the following sets of system call

L1
at . i
B
2.
3

4

parameters.

1. For the open(2) system call:
u.u_arg[0] = file pathname;
u.u_argl[l] = access mode

2. For the close(2) system call:
u.u_arg[0] = file descriptor.

3. For the read(?) and write(2) system calls:
u.u_arg[0]= file descriptor;
u.u_arg[l] = pointer to a user buffer;
u.u_arg[2] = number of bytes to be read

or written

4, PFor the stty and gtty system calls:
u.u_arg[0] = file descriptor;
u.u_arg[l] = pointer to a user buffer.

After the system call parameters are placed in the u.u arg[]
array, the C language trap handler calls the appropriate
UNIX I/0 system call handler routine via the system-call
switch table.

System-Call Switch Table. The system-call switch table

is defined in file /sys/h/sysent.h as an array of structures.
The array is initialized in file /sys/sys/sysent.c. The
following C code declares the array but does not dimension or

initialize it.

1 extern struct sysent {

2. char sSy_narg;

3. char Sy_nrarg;

4, int (*sy_call)();
5 } sysent[] :

iines 1-4 define a structure named sysent which consists of
three elements. The first element, sy_narg, is used to
specify the total number of arguments needed for a particular

system call. The element named sy _nrarg 1s used to specify

the number of arguments passed through special reglsters such

Sysent Table
index sy_narg sy_rarg {(*sy_call)()
3 3 1 read
] 3 1 write
5 2 0 open
¢ 6 1 1 close
| S . . 5
1 32 2 1 gtty
F . -
h . .
é

: Fig 7. System-Call Switch Table

S - as rO. The last element, (¥sy call)(), is a pointer to a

function that returns an integer value (Ref T7:114-116).

Line five declares an undimensioned array of sysent
stfuctures. The array 1s also named sysent, which may cause
some confusion. The sysent array 1s initialized in file
/sys/sys/sysent.c to logically appear as a table with one row

for each system call existing on the system. Figure 7 shows

the table entries for the I/0 system calls. Notice that the

B S

three elements of the sysent structure map directly onto each
row of the table, thereby providing a means of retrieving

. data from the table. The table is indexed by the system call

identifier obtained from the low order byte of the system call

g s YN 4 = STk T ol W AT e T

open

namei openl

!

openi

!

Device Driver
Open Routine

Fig 8. Routines for Processing an open(2) System Call

" trap instruction. The first two columns of the table were used

by the C language trap routine to determine how many parameters
to fetch and how many of them were passed iIn special registers.
The third column of the table, which contains the addresses of
the I/0 system call handlers, 1s used by the C language trap
handler to call the appropriate I/0 system call handler.

I/0 System-Call Handler Routines. The I/0 system calls

open(2), close(2), read(2), write(2), stty, and gtty cause the
C language trap handler to invoke the I/0 system-call handler
routines open, close, read, write, stty, and gtty. Each of

these system-call handler routines is described later.

Open. Figure 8 illustrates the system-call handler

e

routines invoked to process the open(2) system call. The
open routine, located in source file /sys/sys/sys2.c, first
calls the "namel" routine (located in /sys/sys/nami.c) to
convert the file pathname (system call parameter 1 retrieved é
from u.u_arg[0]) into a pointer to an i-node. If the file has ‘

not been previously opened then namel makes a copy of the 4

f4le's disk i-node in the active i-node table (Ref 10:18-3).
' This 1s accomplished via a call to the "iget" routine (Ref
10:18-3). Namei returns a pointer to the active i-node table
entry. Next, open calls the "openl" routine passing it the
polnter to the active i-node. Openl, located in source ille
/sys/sys/sys2.c, first checks file access permissions. Next

1t makes the appropriate entries 1n the system open file table

and the user open file table. Finally, openl calls the "openi®

routine. Openi, located in source file /sys/sys/fio.c,

,' retrieves the special flle's device class and device name.

The device class indicates whether to call the driver open
routine via the character device switch table or via the block
device switch table. The major device number, taken from the
high order byte of the device name, determinec which device
driver open routlne to invoke via the device switch table.

The appropriate device driver open routine 1is called with the

-
& i b o aa

minor device number (taken from the low order byte of the i

device name) passed as an argument.

R N

close

closef

.

closel

!

Device Driver
Close Routine

Fig 9. Routines for Processing a close(2) System Call

Close. Figure 9 illustrates the routines invoked to
process a close system call. As stated by Lions, "the 'close'
system call 1ls used to sever explicity the connection between
a user program and a file and thus can be regarded as the
inverse of 'open'" (Ref 10:18-3). {

The Close routine, located in source file /sys/sys/sys2.c,

zeros out the appropriate entry in the open flle table, h

u.u_ofile [], by fetching the file descriptor parameter from
u.u_arg[0] and using it as an index into the open file table
(Ref 10:18-4). Next, the close routine calls the "closerf" é

routine. Closef, located in source file /sys/sys/flo.c,

decrements the reference count to the file. If there are no

L B3 13 i AT A" g MMl S I AL B

read write

readi writei
Device Driver Device Driver
Read Routine Write Routine

Fig 10. Routines for Processing the read(2) and
write(2) System Calls

‘more references to the file then the system open file table
entry 1s eliminated and the actlve i-node table entry is copled
back to the 1-1ist stored on disk. This 1s accomplished via a
call to the "iput" routine (Ref 10:18-4). Finally, the closef
routine invokes the device driver close routine via the appro-
prlate device switch table. The minor device number is passed
as an argument.

. Read and Write. The read and write system call handlers

are discussed together because they execute some common code.
Figure 10 1illustrates the routines invoked to process the
read(2) and write(2) system calls. The read and write routines,

located in source flle /sys/sys/sys2.c, simply call the

e .

yTERS e TUIU G U TRERT CLIOIRCAE T, T R I Ty e T

L At A o eh .

"rdwr" routine, passing a flag to indicate which routine made
the call (Ref 10:18-4).

The rdwr routine, located in source file /sys/sys/rdwr.c, h
first checks the speclal fille's access permissions to see if
the read or write system call is permitted on that file. This i
1s accomplished by using the file descriptor input parameter
to check the speclal file's access permissions stored in the
speclal flle's actlve i-node. Next, the rdwr routine loads
u.u_base wlth the address of the user buffer which was speci-
fied as the second input parameter of the system call. Next,
u.u_count 1s loaded with the number of bytes to be transfered,
i.e., the third input parameter of the system call. Next,
rdwr sets up the offset into the user buffer by loading
u.u_offset with the offset value obtained from the special
file's active 1-node. Finally, rdwr switches out to either
readl or writel. These two routines are located in source
file /sys/sys/rdwrli.c. For character oriented special files,
readl and writei simply switch out to the appropriate device
dri&er read or write routines via the character device switch
table.

Stty and Gtty. Figure 11 illustrates the routines called
to process a stty or a gtty system call. The stty and gtty
routines, located in source file /sys/dev/tty.c, each alter
the u.u_arg[] array then call the "ioctl" routine. The
u.u_arg[] array 1s altered because the ioctl routine expects
a flag in u.u_arg[l] indicating whether the stty routine or {

the gtty routine made the call. Both stty and gtty alter the

37

peaicinde il S &

A e
- i s

Device Driver
Ioctl Routine

Fig 11. Routines for Processing the stty and
gtty System Calls

u.u_arg[] array in the same way. The data in u.u_arg[l] is

~moved to u.u_arg[2], then the appropriate identification flag

is plaéed in u.u_arg[l]. After this has been accomplished,
the 1loctl routine is invoked. This routine is located in
source flle /sys/dev/tty.c.

For character oriented special files, 1octl simply calls
the appropriate device driver ioctl routine via the character
device switch table, passing both the minor device number and
the i1dentification flag retrieved from u.u_arg[l]. The
identificatlion flag lets the.device driver ioctl routine know
whether the call 1s a stty or gtty call.

Device Switch Tables. The UNIX I/0O handler routines call

38

MR o

b -43Muﬁw"<§u- PN

Bonme g et g b =k g

o g

e dbintinn A S A r Lo

device driver routines via the system's device switch tables.
Two such tables exist; the block device switch table (bdevsw)
for block oriented devices and the character device switch
table (cdevsw) for character oriented devices. In principle,
the two tables are used in the same way. The cdevsw table

is describe here.

The cdevsw table 1s declared in system source file
/sys/h/conf.h and initialized in file /sys/conf/c.c. The
following C code declares the table but does not dimension or
initialize 1it.

. extern struct cdevsw {
’ int (*d open)

3

(s
int (*d_close)()
int (*d read)();

1

int (*d write

int (¥*¥d_ioctl)

int (¥*d_stop)();

struct tty *d_ttys;
} ecdevsw [];

b4
.
3

O O~ =W

Lines 1-8 define a structure named cdevsw. The structure con-
sists of seven elements (lines 2-8). Each of the first six
elements 1is a pointer to a function that returns an integer
value (Ref 7:114-116). The last element is a pointer to a tty
structure.

Line 9 declares an undimensioned array of cdevsw structures
(Ref 7:124). The array is named cdevsw, which may cause some
confusion because each of the structures making up the array
is also named cdevsw. Since the array 1s not dimensioned, no
storage 1s allocated at this point.

The initialization of array cdevsw 1s defined in flle

/sys/conf/c.c. The version of this file used when the VG

graphics device 1s configured on the system, /sys/conf/c.c.vg,
i1s included as Appendix C., The array ls initialized to v

logically look like a table with 23 rows (0-22) of seven

elements each (see lines 53-79, Appendix C). Each row in the
table 1is reserved for a different character oriented peripheral
device. The first six elements in each row are the names of
the device driver routines for a particular device, while the
seventh element 1s a pointer to a tty structure associated with
that particular device.

The seven elements of the cdevsw structure map directly

onto the seven elements of each row of the cdevsw table. -In

this way each row element may be referenced by specifying the

corresponding name from the cdevsw structure. For example,

the code

cdevsw[22].d_open

1ls a reference to the first element of row 22 in the character

device switch table.

It has already been pointed out that the i-node for each

special file contains a device class and device name. It has

also been pointed out that the device class and major device

number are used to determine which device driver routine to

call. Thils concept 1s explained in detall here. The device

class 1s either character or block. This indicates which

switch table to use. The major device number 1s used as a row

index 1into the appropriate table. For example, the i-node for

¥ Y
B e b e ena

a speclal flle assoclated with the VG graphics device contains

a device class "¢" (for character oriented) and a major device
number 22. This information tells the system that the names
of the VG driver routines are found in row 22 of the cdevsw
table. Row 22 contains the entries vgopen, vgclose, vgread,
vgwrite, vgioctl, nulldev, and 0 (see line 77, Appendix C).
Nulldev indicates that there is no driver routine for the
d_stop function, while the zero entry indicates that no tty
structure 1is needed for the VG graphics device.

The following C language statement is a general example
of how the UNIX I/0 handler routines call device driver routines

via the cdevsw table.
(*¥*cdevsw[maj].d_close)(dev);

In thils example, assume "maj" contains the major device number
and "dev" contains the minor device number obtained from a
special file's active l1-node. The statement evaluates to a
function call on the device driver routine whose address
resides in the d_close element of row maj in the cdevsw table.
The minor device number in dev 1s passed as an argument.

The contents of the first set of parenthesis, ¥cdevsw

[maJ].d_close, evaluates to the address of a devicedriver routine

The "#" is the C language indirection operator (Ref T7:89) and

the "." 1s the structure member operator (Ref 7:120). Logically,

®*cdevsw[maj].d_close means get the value stored in the
d_close element of row maj of the cdevsw table. For maj = 22,

the code would return the address of the vg_close routine.

41

A B P i A e 31 s

T Nr——

PRV

Once this address is fetched from cdevsw table, the vg_close

routine is called with Input parameter dev.

Summary. This section began with a very high level flow

chart of how a user program I/0 request is processed. Through-

out this sectlon the flow chart was expanded to show more

detail. All of the routines discussed in this section are

brought together in the form of a structure chart displayed

in Pigure 12. This chart represents all the main routines

called to process user I/0 system calls. Levels zero and

one represent user level routines, levels two and three the

trap handler routines, levels four through six the I/0 system

call handler routines, and level seven the generilc device

driver routines. The next section describes how peripheral

device interrupts are processed by UNIX.

Processing Peripheral Device Interructs

The high level flow chart for processing interrupts is
This figure illu-

expanded 1iIn Figure 13 to show more detail.

strates the types of routines called to process an interrupt

and identifles the mechanism used to transfer control between

each group of routines. An interrupt generated by the

occurrence of an event on a periperal device causes a transfer

.
-~ rems o NS o Mdme ol

of control to the UNIX interrupt handler routine via the

device's interrupt vector. Control 1s transfered from the

UNIX interrupt handler to the appropriate driver interrupt

handler via the same interrupt vector.

The remainder of this section describes the peripheral

durssadoad O/I Teasaydiasd Butang PITTB) SIUTINOY Ulenw 2T BTd

sutInoy autjnoy autanoy autiInoy autqnoy
3sS0T) T30 31TaIM pBaY uadp
JaATaq JoATI(d asAatag JISATIQ JaA1aq
9dTAl(80TAl(Q 20148(a0T1A8(90TAB(

L ToA97

: ? P

a _ T93TaM _ _ pBalX _ Tuado 9 T8A31]

JasoTo 139007 aApa Tuado ToWwBU | ¢ T9AST
L > X -
ssord | £119 u ﬂ £1as ~ 23Tan — puad uado {1 TeA91 =

p—

<>
sutqnoy dweuxl, s3snduwri-) € ToAdq
— sutgnoy dsal, a8s8ndue] ATquassy 2 TeA9
. (g¢)3sot2 K339 K318 (2)931Im (c)peal (2)usdo T ToA9]
3
|
M v WBJIIOIJ J3SM) 0 ToaAaT7
3 T
3
L
- P SERTNE SR M e

e

P il i

N e - A e

Peripheral Peripheral

Device Device Event
7 - \
\
\
\
\
\
UNIX Assembly \ gzzipgeral
UNIX ----] Language Inter- Yy Inte;ru ¢
rupt Handler /7 Veotor p
/
/
/

Device Driver | Device Driver
Routines "7 Interrupt
Handler

Fig 13. Interrupt Processing Routines and
Control Transfer Mechanism

device events, the device interrupt vector, and the UNIX
interrupt handler routine. The VG's device driver interrupt
handler, vgint, is described in detail in chapter six.

Peripheral Device Events. As opposed to system traps,

interrupts result from events external to the CPU. External
peripheral device events generate interrupts to get the atten-
tion of the CPU. The CPU 1is deverted from whatever 1t was
doing and redirected to execute another program to process
the event that caused the interrupt (Ref 10:9-1).

A number of different eventsvoccuring on a peripheral
device may generate an interrupt. Some typical ones are input,

output, device errors, etc. The types of events that generate

by

e e T

t

R P P

AR ot

T T e " T

interrupts are dependent on the type of peripheral device.
Some peripheral devices may not have interrupt generating
capabllity, while others may only support a few types of
interrupts. Some devices support a wilde range of interrupt
generating events and even allow the user to "turn on" and
"turn off" the interrupts for selected events (Ref 17:2-82
to 2-85).

The System Interrupt Mechanism. The system interrupt

mechanism allows external devices to interrupt the CPU. Each
device has an interrupt vector associated with if which is
used to transfer control during Iinterrupt processing.

Peripheral device interrupts are assigned a priority
level 4, 5, 6, or 7. This priority is determined by the hard-
ware (Ref 10:9-2). The processor also has a priority level
associated with it from 0 to 7. This priority 1s carried in
the current processor status (PS) word, bits 7 to 5 (Ref 10:9-2).

When a peripheral device generates an interrupt, the
interrupt is inhibited as long as the processor priority is
greater than or equal to the interrupt priority (Ref 10:9-2).
When the processor priority becomes less than the interrupt
priority, the interrupt 1s recognized. The processor then
goes to the appropriate interrupt vector location to fetch
new PS and PC values.

Different peripheral devices may have different interrupt
vector locations. The location for a particular device is
determined by hard wiring (Ref 10:9-2). The interrupt vectors

on the PDP11/60 are located in low core and are defined in

45

UNIX
Assembly
Language
Interrupt
call unty/ | Handler
Interrupt % 374 New Interrupt
Generated PC *T—®! Handler
by VG Call VG
Display 374 New Interrupt _
System PS Handler
‘I vgint

Fig 14. Interrupt Vector for VG Display System

- the source file /sys/conf/l.s. A complete 1listing of the
version of this file used for the VG graphics device,
/sys/conf/l.s.vg, is given in Appendix B. For the VG graphics
defice, the new PC and PS values are loaded from octal loca-
tions 374 and 376 respectively (see lines 60-61, Appendix B).

The flow chart depicted in Figure 14 shows the transfer
of control during interrupt processing. The VG graphic device's
interrupt vector 1s used as an example. The processor loads
new PC and PS values from the hard-wired vector location 374
and the word following that location, 376. After this step,
the PC is pointing at a pair of interrupt handler calls (see

line 84, Appendix B). The first is executed calling the UNIX

46

device independent interrupt handler. When thils routine is

finished, the device dependent interrupt handler, vgint, which
i1s part of the device driver software, 1s invoked.

The UNIX Interrupt Handler Routine. The UNIX interrupt

handler conslsts of some of the same assembly language code
executed to process system traps. This code 1s located in
file /sys/conf/mch i.s. For processing traps, the entry point
' to the code is label "trap". For processing interrupts, the
entry point is label "call" (Ref 10:9-3). As with traps, the
assembly language code first saves appropriate information on

the system stack to be restored later. The device driver

interrupt handler is then called to process the device depen-

dent aspects of the interrupt.

Summary
‘ This chapter described how the UNIX version seven operating

system processes both user program requests for peripheral
device I/0 and peripheral device interrupts. This information
is useful when developing driver software that runs under UNIX

version seven.

Now that peripheral device I/0 has been described, the next

chapter discusses the VG 3404 peripheral device.

R

47

e , : T O ——

!
IV The Vector General 3404 Graphics Display System j
1

Overall Description

The Vector General 3404 graphics device is a sophisticated
graphics display system made up of the following major func-

tional components (Ref 17:1-1). ;1

Computer Interface

Graphic Processor Unit (GPU)
Refresh Buffer Unit (RBU)
Display Control Unit (DCU)
Vector Generator Unit (VGU)
Font Generator Unit (FGU)
Monitor Control Unit (MCU)
Display Monitor(s)

Display Input Device(s)
Options

QOW O~V &W N -

[

Figure 15, derived from the Programming Concepts Manual

' (Ref 17:1-3), 1s a block diagram depicting the organization
of the major functional components.

A user program builds a display 1ist in the host computer's
memory. This list is made up of instructions to be executed by
the display system's Graphic Processor Unit (GPU). A complete

list of the GPU instruction set is given in the System Reference

Manual (Ref 18:3-7). The manual also provides a detailed des-

cription of each instruction (Ref 18:3-8 through 3-56).

X e
e - A A A oam

After the display 1list has been bullt, the user program

.

signals the GPU to start a one-time transfer of the display

»

1ist from computer memory to the GPU via the computer inter-

face. The GPU interprets the instructions in the display 1list

and outputs a new list of elementary instructions called a

48

uorseziuedap waysLs Aerdsig 6T BT

uot3do
uot3do (s)@o83aajug
MODUTM uad 4y3y] sT8Td
X014 TOI3u0)
J93IAUOD
uag T83191q
3T : -o03-fotsuy

770 o1384kop

J05S9001J3
dtydsan

aoBJIajuy
(8)a03TuUoH . 19TqElL 19Tq8L
B98Q B8YB(J

3TUn
Tox3u0)
s
aoBJJI9qUT :
90T4A3Q
1e3131q
ITUN nwwmwm pasoqAay
ﬂTl usp ysa1zay ot1xaumusydry
I0303A Itun
Toax3uo)
Retds1q

Xog

—

?09Ja93ul Ja3ndwo)
sng Sorsuy 980H

TR I 00 A e oo

refresh 1list. The refresh list i1s stored in the display
system's Refresh Buffer Unit (RBU). The refresh list 1s
repeatedly sent from the RBU to the Display Control Unit (DCU).
The DCU interprets the refresh list instructions and causes
the Vector Generator Unit (VGU) to draw lines, the Font
Generator Unit (FGU) to draw characters, and the Monitor
Control Unit (MCU) to control the CRT (Ref 17:1-1).

The remalnder of this chapter is divided into two sectilons.
The first section 1s a brief description of each of the dis-
play system's major functional components. This is followed
by a discussion of the display system registers accessable fecr
command, control, and communication purposes. Emphasis is
placed on a description of the registers dealing with the

display system input devices.

Functional Description of Major Display System Components

The display system's major functional components are des-
cribed in both the Programming Concepts Manual and the System

Reference Manual (Refs 17:1-2 to 1-7 and 18:2-2 to 2-5). Each

major component 1s briefly described here.

Computer/Display System Interface. All communication

between the host computer and the display system takes place
Yia a hardware interface. The next chapter 1is devoted to a
detalled description of the hardware interface between the
PDP1l and the VG display system.

Graphic Processor Unit. The GPU is a high-speed specilal-

purpose processor designed to handle complex algorithms such

et bl o x T P ’ T = S P T o - pn
* i j Ea R T il e

R ee— < T E——

as transformations and other image manipulations. The GPU's
instruction set consists of U7 basic instructions. User pro-

grams build display lists which consist of instructions from

-

the GPU's instruction set along with any necessary data. The
GPU fetches the user display list and associated data from the
! host computer's memory via a direct memory access (DMA)
channel provided by the host computer/VG3404 hardware inter-
) face. The GPU processes the display list and outputs a
refresh list to the RBU. Interaction between the GPU and RBU
permits element selection and picking (Refs 17:1-2 and 18:2-2).]

All communication to and from the GPU takes place over the i

VG's Graphic Processor (GP) bus.

Refresh Buffer Unit. The RBU 1s made up of random access

memory (RAM) and the control logic needed for reading and
' writing the RBU. The RBU may be continuously updated by the
f GPU over the GP bus.
The DCU accesses the RBU to update the displayed picture
' 8 on the CRT screen. This takes place during each refresh

cycle and does not interfere with the GPU updates to the RBU.

The RBU cbntains the necessary control loglic to operate

1j4 1n double buffer mode. In double buffer mode, data may be
} moved from one buffer to the next when reorganizing the dis-
4

play refresh list for editing purposes.
Display Control Unit. The DCU fetches the refresh list

from the RBU via the VG's MD bus. It processes the refresh

o 1list instructions and sends the appropriate refresh data to i

s the VGU, FGU, and MCU. It also generates the control signals

51

that cause the VGU, FGU, and MCU to display the refresh data.
All of the communication between the DCU and the VGU, FGU,
and MCU takes place over the DCU bus.

Vector Generator Unit. As stated in the Programming

Concepts manual, "the VGU 1Is a high speed vector generator which
provides the deflection signals required to draw a line from
one point to another on the face of the CRT" (Ref 17:1-5).

The VGU operates on the x-y coordinate data it receives from
the DCU via the DCU bus. It has the capability of generating
curved lines on the display using a smoothing technique. It
also performs the spacing between character positions as the
FGU displays text.

Font Generator Unit. The FGU receives character codes,

scaling, font, and rotation parameters from the DCU via the
DCU bus. The character codes used are from the set of 96
ASCII characters.
The FGU uses a programmed ROM in conjunction with "stroke"
character draws to display the characters on the screen
(Ref 18:2-4).

Monitor Control Unit. The MCU selects the deslired CRT

for display and provides the required unblanking and intensity
signals for the monitor video channel.

Display Monitors. The VG 3404 will support up to six

CRT monltors per MCU. Optionally, up to eight CRTs can be
supported (REf 17:1-6). AFIT only has one monitor at present.
Display System Input Devices. At present, AFIT's VG

display system does not support the joystick, control dials,

T TR g T —

Rl A

k2

nor light pen input devices. Nor does it have any remote
input devices. The basic local input devices supported on
AFIT's system are the alphanumeric keyboard, function switch
box, and data tablet. These input devices all generate
interrupts to the host CPU when they require service.

Options. The options available on the VG 3404 are listed
in the Programming Concepts Manual (Ref 17:1-7). They include
such things as additional input devices, additional RBU/DCU
sets, pick facllity, color monitors, etc. Aside from the
input devices already mentioned, AFIT's display system has no

other options.

Display System Reglsters

The VG contains many registers that can be read and
written by the device driver and user programs to control
display processing and to pass data and status information
back and forth between the host computer and the display
system. Each of these regilisters has a unique address in the
display system. Each reglister is associated with one of the
VG's major functional units. The registers are divided into
two categories; (1) GPU registers and (2) hardware and device
registers. A complete list of GPU regilsters, along with a
gescription of each, is given In the System Reference Manual
(Ref 18:3-57 through 3-70). The hardware and device registers
are listed and described in both the System Reference Manual
and Volume one of the Technical Manual (Refs 18:5-1 through

5-20 and 20:2-1 through 2-23). The purpose here is not to

53

ol e e > 47

describe all of these registers. Users can learn the use of
each register by studying the manuals. At this point, it
suffices to say that the UNIX operating system and device
driver software provide the capability for user programs to
read and write any of the display system registers via the
stty and gtty system calls. This capability 1s deséribed

in detail iIn chapter six,.

The device driver software accesses some VG registers
without belng requested to do so hy a user program. In
particular, the device driver interrupt handler accesses the
registers associated with the VG's input devices during
interrupt processing. These registers are described in the
Programming Concepts Manual (Ref 17:2-82 to 2-85). Only
the 1nput devlces on AFIT's system are described here.

Data Tablet Registers. Three registers are associated

with the data tablet. They are illustrated in Figure 1l6a.
The display system addresses for these three registers are
1600-1602 (Ref 18:Appendix C).

The first two registers, Dfx and DTY, hold the X and Y
stylus positlons respectively. These values are stored 1in
the form of signed twos complement integers in the leftmost
ten bits of the registers. These values are updated con-
étantly as the stylus 1s moved around the data tablet.

The third register, DTS, holds control and status in-
formation. The X0S and YOS bits indicate that the stylus
i1s out of bounds on the data tablet surface in the X and/or

Y directions respectively. The PNN bit indilcates the stylus

54

e 4

A e A mee a

orx| *

prY| *

DTS ——— | x0s| vos| PNNIPRS [IEN
(a)

FSLO $00-S15(READ), LOO-L15(WRITE)

FSL1 S16-531(READ), L16-L31(WRITE)

reke | ~Jsor [NJspo | ————__ Jrp1frE1 Jrpo frro

(v)

KBI{KDV |KIE

DATA

(e)

Fig 16. Input Device Registers

dicates the stylus

_ 1s ‘within the '"near" zone above the tablet. The PRS bit in-

switch is depressed. The IEN bit is set

to enable interrupts generated by a change in the X0S, YOS,

PNN, or PSS bits.

It is set by the device driver program

when a user program requests use of the VG data tablet.

Function Switch Box Registers. Three registers are

associated with the function switch box. They are depicted

in Figure 16b. Their addresses are 1604-160€ (Ref 18:Appendix

C).

55

The sixteen bits of the first register (FSLO) correspond
to the function switches S00-S15 and their respective lamps,
L00-L15. The sixteen bits of the second register (FSL1)
correspond to function switches S16-S31 and their respective
lamps, L16-L31. The meaning of these two registers depends on
whether they are being read or written by the device driver
software. When reading, these two registers provide input
data from the 32 function switches S00~S31. Every function
switch depressed before the read causes the corresponding
register bit to be set (Ref 17:2-83). When writing to these
registers, all bits set to one turn the corresponding lamps
(LO0-L31) on.

The third register, FSKC, is for control and status. The

IEO and IEl bits enable interrupts from the two switch groupings,
S00-S15 and S16-S31 respectively. These bits are set by the
device -oftware when a program requests use of the function
switches. SDC and SD1 are sense bits which indicate a switch

is latched in the S00-S15 and S16~S31 groups respectively.

The LDO and LDl blts can be set to cause latching of all

switches depressed in the S00-S15 and S16-S31 groups respec-
tively. The latched data 1s cleared from FSLO and FSL1l regis-
ters each time they are read by the device driver.

Alphanumeric Keyboard Reglster. One register 1ls associated 1

with the alphanumeric keyboard input device. It is illustrated

in Figure 16c. The display system address for this reglster
is 1607 (Ref 18:Appendix C).
The eight bit DATA field holds the ASCII code of rhe key

2 depressed. The KIE bit enables interrupts for the keyboard.
This bit 1s set by the device driver when a user program
requests use of the keyboard. The KDV bit 1s set by the dis-~

play system each time a key stroke has been latched in the

data field. Reading the data fleld clears the KDV bit and

allows another keystroke entry (Ref 17:2-84).

Summary 1
This chapter presented a functional description of the

major components of the display system (except for the

computer/VG3404 hardware interface component). A detailed

description of the display system reglsters assoclated with
AFIT's VG input devices was also given. The next chapter

describes the PDP11/VG3UOL hardware interface in detail.

t

RIPREL (1 9 vt avrmes

V The PDP11/VG3404 Hardware Interface

Communication between the PDP11/60 computer and the
Vector General 3404 graphics display system 1s established
via the DE41 hardware interface (Ref 19). As stated in the
DEU4]1 reference manual, "this unit interfaces between the
Unibus of any PDP11/60 computer and the General Purpose I0
Bus of the NPL display controller" (Ref 19:3).

The 1interface prcvides four sixteen bit registers that
can be directly addressed by the VG device driver running
in the host computer. These are the Status, Control, Data,
and Base Address reglisters. Using these four registers, the
Interface recognizes four 1lnput instructions and four output
instructions. These eight interface I/0 instructions, to-
gether with the four addressable interface registers, estab-
lish three channels of communication between the host com-
puterAand the VG display system. These three channels are
the direct memory access channel (DMA), the interrupt channel
(INT), and the programmed I/0 channel (PIO). These three
channels are i1llustrated in Figure 17 taken from the Pro-
gramming Concepts Manual (Ref 17:2-2).

First, a detailed description of how to access the four
“interface registers from the device driver program in the

host computer will be given. This 1is fellowed by an ex-

planation of the use of the interface's eight I/O instructions.

Finally, communication on the DMA, INT, and PIO channels is

) descriveq,

o .

DMA

INT

A

w, 0,

Computer Display System

Fig 17. Interface Communication Channels

Accessing the Interface Registers

The interface's Status, Control, Data, and Base Address

registers can be directly addressed by the VG device driver

software executing in the host computer. These special
registers are assigned physical addresses 0763400, 0763402,]
0763404, and 0763406 from the highest page of the host com-

puter's core memory. Thils 1s done because the highest page

B v
. R SO U S U

of core memory (addresses 0760000 to 0777777) 1s reserved for

special registers associated with the processor and the

peripheral devices (Ref 10:2-5).
>’f Addresses from the highest page of the virtual address

space (0160000 to 0177777) are mapped directly to the

1.

At aaa o

addresses of the highest page of the physical address space
(Ref 10:2~5). Therefore, the interface's Status, Control,
Data, and Base Address regilsters have virtual addresses
0163400, 0163402, 0163404, and 0163406 respectively. These
virtual addresses are used in the device driver software to
access the interface registers. The system takes care of
mapping these sixteen bit virfual addresses to their eighteen
bit physical addresses by adding in a base address obtained
from the appropriate page register. Address mappling is
described in detail in the section on the DMA channel.

The interface registers can be easily accessed from the

device driver software. First, it 1s helpfull to associate
meaningful names with the register addresses. This 1is
accomplished in the C language with the "#deflne" macro
substitution (Ref 7:86). The following C code was placed at
the beginning of the device driver to assoclate names with

*

the interface register addresses.

#define VG_STAT 0163400
#define VG_CONT 0163402
#define VG_DATA 0163404
#define VG_BAR 0163406

W
L] L] e .

These statements tell the macro preprocessor, which is not
part of the compller proper, to replace all subsequent
occurrences of the names VG_STAT, VG_CONT, VG_DATA, and
VG_BAR with character strings 0163400, 0163402, 0163404, and
0163406 respectively.

VG_STAT, VG_CONT, VG_DATA, and VG_BAR are simply pointer

60

_44 ."
A
S N S

values to the interface's Status, Control, Data and Base

Address registers. In order to access the contents of the
interface reglsters, the polnter values to the registers must
be dereferenced (Ref 10:5-5). That 1s, the contents of the
referenced location are deslred instead of the reference
itself. This is accomplished in the C programming language
by creating a dummy structure consisting of one element,
named "reg" (abbreviation for register), which is declared

as type Integer. The code
struct { int reg; };

is used in the device driver program (see line 99, Appendix
D) to describe the dummy structure. Thils code does not

cause storage to be allocated, it simply describes a template
or the shape of a structure (Ref 17:120). A reference to the
"reg" element of this template can be.made using the struc-
ture pointer operator "->" (Ref 7:122).

The contents of the interface registers are accessed by
specifying the appropriate pointer value (VG_STAT, VG_CONT,
VG_DATA, or VG_BAR) connected to the "reg" element of the
dummy structure by the "->" operator. To the C compiler,
the code "VG_STAT->reg" means that 0163400 is the beginning
address of an occurrence of the dummy structure. Since "reg"
1s the first and only element of the structure, 1ts address
is also 0163400. Therefore, the code "VG_STAT->reg" simply
stands for the contents of address 0163400, i.e., the con-

tents of the 1interface's Status register. The codes

61

[iagitts LRI ‘i o SR S Ao S
BBa . v - ner e . aeee <imefe - -

"VG_STAT->reg", "VG_CONT->reg", "VG_DATA->reg", and
"VG_BAR->reg" cause four separate occurrences of the dummy
structure template to be overlayed on virtual memory at vir-
tual addresses 0163400, 0163402, 0163404, and 0163406. The
result of this code is represented pictorially in Figure 18.
The four interface registers are all read and written

in the same way. For example, the C code statement
VG_DATA->reg = expression;

is used to load the interface's Data register. The word
"expression" on the right side of the assignment operator

can be a constant, variable name, function call, or any other
legal C language expression. To read the same register the

code
i data = VG_DATA->reg;

.

i1s used; where "data" stands for some variable name.

The Interface's Eight I/0 Instructions

Using the four addressable registers described above,

the interface recognizes four input instructions and four

o d

output instructions (Ref 19:5). These are Status In and

Status Out, Control In and Control Out, Programmed In and

B D PG e

Programmed Out, and BAR In and BAR Out. The device driver
executes these instructions by reading and writing the four
addressable interface registers. All of the commands are

executed over the interface's PI0O channel. However, many of

62

— " - ek 2l A

PRI

Template Created by
the Dummy Structure

reg

0163376
VG_STAT 0163400
VG_CONT 0163402
VG_DATA 0163404
VG_BAR 0163406
0163410
0163412

Virtual Memory

(organized by words)
Overlayed with Four
Occurences of the

Dummy Structure Template

reg

reg

reg,

reg

!

Fig 18. Using a Dummy Structure to Access the
Contents of the Interface Registers

PEIRE 2 7R g

e

i "

these instructions affect communication on the DMA and INT

channels. T
At this point it is worthwhile to mention that the four

input instructions send input from the interface to the

device driver, while the four output instructions send out-
put to the interface from the device driver. 1In other words,
the interface sends input to the device driver program and
recelves output from the device driver program.

A detalled description of the interface's eight I/0 1
instructions can be found in the DE41 reference manual |

(Ref 19:5-T7). A brief description of the purpose of each of

i i

the eight instructions is given here.

The St=tus In instruction (Ref 19:5) is used to obtain
the ID of ti. .ast unit (within the VG display system) that
interrupted the PDPll processor. The Status Out.instruction
i1s used to restore the contents of the interface's Input
Buffer Register (INR) after an interrupt has been processed.
N Depending on which bits are set, the Control In and
Cohtrol Out instructions (Ref 19:6) accomplish different
tasks. Control In can be used to test whether the interface
power 1s on, whether an input operation requested by the
device driver program has been completed, or whether an
‘output operation iiitliated by the device program has been
completed. The Control Out 1nstruction can be used to ini-
tialize the 1Interface, enable new interrupt requests from the

VG display system, acknowledge interrupts received from the

VG display system, speclfy the address of a VG register so

that 1t may be read or written, or request input from a
VG register.

The Programmed In instruction (Ref 19:7) reads the con-
tents of the interface's Input Buffer Register (INR). Pro-
grammed Out writes data to the VG register whose address was
specified by the last Control Out instruction with the
Register Change (RC) bit set.

The BAR In instruction (Ref 19:7) is used to read the
interface's Base Address Register. BAR Out (Ref 19:7) 1is
used to load the 1interface's Base Address Reglster. The
functlon of the interface's Base Address Register 1is des-

cribed 1n detail in the section on the DMA Channel.

Channel Communicatlon

As mentioned earlier, the eight interface I/0 instruc-

tions, together with the four addressable interface registers,

are used to establish three channels of communication (DMA,
INT, and PI0O) between the host computer and the VG graphics
device. The block diagram in Figure 19 illustrates which
system components use each of the three channels. Communi-
catlon may occur concurrently on all three of these channels
(Ref 17:2-2). The purpose of this section is to describe
yhat type of information flows over each channel, and how
that flow of information i1s controlled.

The DMA Channel. The DMA channel 1s described in the

Programming Concepts Manual (Ref 17:2-3). Primarily, the

channel 1s used to pass the user defined display list from

.

83es) Tauuey) UOTFEOTUNWWOD

*6T 314

wagsAg
£Le1dstq dA

09/11dad

INI

DR ——
0Id

90BJJI9UT
aJeMpJaeH

ViRd

gt XINN

INI

!

; _ J3ATJ
3 Tad

0Id 30TAS8(Q

BaJy

VWa| ™| eaeq aasq

66

the host computer to the GPU in the display system. As the
GPU processes the display 1list, it may fetch and/or store
data in the host computer memory as required by the display
list instructions. This data transfer also takes place over
the DMA channel (Ref 17:2-3).
Memory addresses for DMA transfer are formed in the
hardware interface by mapping 16 bit virtual addresses to
18 bit physical addresses. This is accomplished by adding
the contents of the interface's Memory Address Register (MAR)
to its Base Address Register (BAR). This address mapping is
described in detail in the DE41 interface manual (Ref 19:13).
Before address mapping can take place, the BAR must be
loaded with the proper base address. This address is ob-
tained from a segmentation register in the host computer.
The segmentation register used depends on whether.the UNIX

operating system has assigned the user program a sharable

text segmen. or not.

If the user program has not been assigned a sharable
text segment then the space allocated for the program to run
i1s guaranteed to be mapped into contiguous memory and to

begin at the zeroth page of the user's virtual address space.

In this case the value loaded into the BAR is taken from
‘the first User Instruction Space Address Register (UISA)

located at virtual address 0177640 on the PDP11/60 (Ref 11:3).

! If the user program has been assigned a sharable text
j segment, then the user space might not be mapped onto con-

tiguous memory. In thils case, the pointer to the user's

67

1M~_¥L; Rt - guapp

text segment, u.u_procp->textp (see line 452, Appendix D),

1 ‘ 1s used to calculate which segmentation register to use for
loading the 1interface's BAR.
The VG device driver program checks for the two cases
described above, then loads the BAR from the appropriate
f segmentation register with the BAR Out instruction. The
. code that accomplishes this task 1s discussed in the next
’ chapter.
Once the BAR has been loaded, memory reads and writes
can take place over the DMA channel. The following sequence
of steps occur during a memory read (Ref 19:9).

l. The GPU requests use of the GP bus for a delayed
data transfer.

2. Once the request 1s granted, the GPU sends a
virtual memory address over the GP bus to the
hardware interface's MAR. N

' 3. The interface maps the 16 bit virtual address
stored in the MAR to an 18 bit physical address.
The base address stored in the interface's BAR i
1s used during address mapping.

4. The hardware interface uses the 18 bit physiecal

address to access PDP1ll memory (via the UNIBUS)
for the requested data. The retrieved data 1is

?laced in the interface's Input Buffer Register
INR).

Next, the interface requests the GP bus for a
second data transfer. When the request 1is
granted, the data 1s transferred from the inter-
face's INR to the GPU.

calar-4 0™ .
T U

wn

»

Steps 1, 2, and 3 are the same for a memory write

operation. Steps 4 and 5 are changed. The changes are

listed below.

68 f

= . " _ - g T i w
. e ‘ o K R . G Ty

]

[GO

P e

4, The interface reads the data from the
requesting unit and places it 1n its INR.
Thls is a separate GP bus transfer.

5. The interface uses the 18 bit physlcal address
formed in step 3 to write the data from its INR
to PDP11 memory (via the PDP11l UNIBUS).

Information flow on the DMA channel 1s controlled by
interface I1/0 commands executed on the PIO channel, the con-
tent of the user defined display list, and the occurence of
events within the display system. Commands sent over the
PIO Channel may start and stop the transfer of the user
defined display list from computer memory to the GPU. In-
structions within the display list may alter the normal
sequential processing from computer memory. The occurrence
of a display system event, such as an interrupt from a dis-
play system input device, temporarily halts display list
processing (Ref 17:2-3). .

The Interrupt Channel. The Interrupt (INT) channel is

described in the Programming Concepts Manual (Ref 17:2-3 to
2-4). The channel is used to signal interrupts to the PDP1l
processor from the VG display system. A number of different
events on the display system may generate interrupts. For

example, keyboard, function switch, and data tablet inputs

are all display system events that generate interrupts to

the PDPll processor. An interrupt 1s processed by the
following steps (Ref 19:10-11).

1. A sub-unit of the VG display system signals an
interrupt to the interface.

69

L

e - — L e TL VU S

2. In accordance with priorities, the interface grants
the GP bus to the requesting unilt.

3. The requesting unit transfers a 6-bit interrupt
identification to the interface's interrupt Iden-
tification Register (IDR). Subsequent interrupt
requests are not honored by the interface until
the current one is acknowledged by the device driver

software.

4, The interface raises a priority level four inter-
rupt request to the PDPll Central Processor
Unit (CPU).

5. In accordance with priorities, the CPU invokes
the interrupt handler which is part of the device
driver software.

6. First, the device driver interrupt handler, vgint,
dlsables interrupts. Next it reads the interrupt
ID from the interface's IDR to determine which
VG sub-unit generated the interrupt.

7. As soon as the interrupt handler has acquired the
interrupt ID from the IDR, it issues a Control Out
instruction to set the interrupt acknowledge (ACK)
bit in the interface's Control register. This
acknowledges the interrupt and permits IDR to be
changed by subsequent interrupts.

8. The interrupt handler performs the function re-
quired for the sub-unit that generated the
interrupt then enables interrupts and returns.

The Programmed Input/Output Channel. The PIO channel

is described in the Programming Concepts Manual (Ref 17:2-4
to 2-7). This channel 1s a bi-directional data path between
the device driver software and the display system. The in-
.put path 1s from the display system to the device driver,
The device driver controls the channel in both directions
through the eight interface I/0 instructions. The Prc¢ jram-

ming Concepts Manual lists the followlng uses of the PIO

channel (Ref 17:2-4).

¥

.
B U S Ur U

. Acquilre status 1information.

Initialize the interface.

Read and write display system registers.

Start transfer of the user display 1list.
Control, categorize and acknowledge interrupts

1
2.
3
4
5

The remainder of this section describes each of these capa-
billities.

Status information can be obtained about both the inter-
face and the display system over the PIO channel. The inter-
face's Control In instruction can be used to check for power
on. Other status information about the display system is
obtained by reading the appropriate display system registers.

The interface is inlitialized by executing a Control Cut
with the initialize (INIT) bit set (Ref 19:6). This is one
of the first things done by the device driver.

Display system registers can be read and written over
the PIO channel with the Programmed Input (PIN) and Pro-
grammed Output (POUT) routines. These routines are not to
be confused with the Programmed In and Programmed Qut in-
structions. PIN and POUT are invoked by the device driver
to read and write display system registers, whille Programmed
In and Programmed Out are used by the device driver to read
and write interface registers.

The PIN routine performs the following sequence of
events (Ref 19:8)

1. Issue a Control Out setting the Control register's

Request Input (RQI) bit equal to one, its Register
Change (RC) bit equal to one, and its Register

Number (RN) field equal to the address of a display
system register. This causes the interface to

71

request data from the specified register. The
data 1s transfered over the display system's GP
bus. As long as the interface 1s still searching
for the data, the Input In Process (IIP) bit is
equal to one.

2. When the IIP bit equals zero, the requested data
has been loaded into the interface's INR.

3. The data is read from INR with a Programmed In
instruction.

The POUT routine consists of the following sequence of events.

1. Issue a Control Out setting the Control register's
RC bit and loading its RN field with the address of
the desired display system register.

2. The output data 1s loaded into the interface's Data
register with a Programmed Out instruction.

3. Wait for the output process to complete by sensing
the Output In Progress (OIP) bit of the interface's
Control register. When it changes to zero theg out-
put process has been completed.

The PIO channel is used to start transfer of the user !
display list. PFirst, a Programmed Out instruction is exe-
cuted to load the interface's Base Address Register. Next,
the POUT routine is used to load the GPU's Directory (DIR)
and Picture Base Object (PBO) registers. Finally, the POUT
routine 1s used to load the GPU's Command (CMD) register
with the commands that cause the GPU to fetch the display

1ist from computer memory (Ref 18:4-3).

A 3 e
. i e A o aea

A very important function of the PIO channel is the con- 4

trol, categorization and acknowledgement of 1interrupts
(Ref 17:2-5). General interrupt handling can be enabled and
disabled with the Control Out instruction. The POUT routine

can be used to enable and disable particular types of

72

g WIS e

interrupts by writing the approprlate value to the appro-

prlate display system register. Interrupts are categorized
by first obtaining the interrupt ID over the PIO channel
using the Status In instructlon. Interrupts are acknow-
ledged over the PIO channel by invoking the Control Out in-
struction to set the Interrupt Acknowledge (ACK) bit in the

interface's Control register.

Summary

This chapter described the hardware interface's four
addressable registers, eight I/0 instructions, and three
¥ : communication channels. !
Now that peripheral device I/0, the VG display system,

and the PDP11/VG3404 hardware interface have been described,

E_; the device driver routines can be explained. This is accom-
E 3

.& plished in the next chapter.

X 73

RIERIRREE G o) 23 - < ov g«

VI The VG Device Driver

This chapter specifies the requirements for the VG device

driver, describes the overall driver design, and documents

the implementation of the driver.

Requirements

The VG device driver obtained from the University of
Texas at Austin met certain requirements. This section iden-
tifies the original requirements then specifies the require-

ments adopted for AFIT's version of the device driver.

Original Requirements. The VG device driver obtalned

from the University of Texas was required to support two
different levels of graphlics. These two levels are degicted
in Figure 20 (Ref 12:31).

With the level two graphics, the user display 1list con-

sists of powerful GPU instructions. The GPU takes the in-

structions from the user display list and transforms them
into a set of more fundamental instructions to be used by the
DCU for display generation. The GPU performs the required
two and three dimensional rotation, translation, windowing,
clipping, curve generation, scaling, and sub-object defini-
tion management.

With level one graphics, the GPU is bypassed and the
user display list 1s written directly into the RBU. This
means that the user display list must consist only of the
fundamental instructlions understood by the DCU. This implies

that the user program is responsible for performing all trans-

qaoddng sotyydedap Jo STSAdT OML S,WnNTTBIOW ‘02 3Td
Letdsta ngy auQ
19A97 "
[
ndo OM],
TaaaT

— e e - -

i 1

SRS e

3 4

formations before building the display list. In order to
support the level one graphics, a special DCU/RBU driver

was installed. This driver provided the capability of reading
and writing the RBU directly.

Another main requirement for the original driver was
compatliblility with the UNIX version six operating system.
This included utilization of the standard UNIX interface for
character oriented devices and support of the standard UNIX
I/0 system calls; open(2), close(2), read(2), write(2), stty,
and gtty.

The original driver was also required to support the
input devices avallabie on the VG display system at the
University of Texas. These consisted of a funection switch
box, an alphanumeric keyboard, and a light pen. Even though
the original driver only incorporated the routines required
for handling the avallable input devices, it was designed so
that other input device handlers could be easily added.

The original driver provided most user programs the capa-
bility of reading and writing any addressable display system
register. This capability is very important because the user
program has to be able to load command and control informa-
tion into display system registers. The user program must
‘also be able to fetch display system status information and
other data from display system registers. In conjunction
with reading and writlng display system reglsters, the
original driver also allowed user programs to set and get

certain device characteristics.

76

Requirements for AFIT'S VG Device Driver, Since a major

objective of this thesis was to use as much of the original

driver as posslible, most of the original driver requirements
were adopted for AFIT's version of the driver, Any changes

that were made to the original requirements were mostly due

to differences in the configuration of AFIT's system,

It was decided to not support the original requirement
for a level one graphics capability. The main reason for this
' decision was that the original driver would not fit on AFIT's

PDP11/60 due to limited space on the system. The level one

',; graphics capability was selected for elimination because it
did not use the dlsplay system's most powerful asset, the GPU,
Elimination of the level one graphics did not degrade the
system's capabilities, whereas elimination of the level*two
graphics would have limited the system's capabilities severely.

Another main requirement for AFIT's VG driver was com-
patibility with version seven of the UNIX operating system,
To meet thils requirement, some changes had to be made to the
original driver. These changes are described in the next

chapter.

devices available on AFIT's VG display system. These include
the function switch box and alphanumeric keyboard supported

:i AFIT's device driver was required to support the input
i by the original driver, plus the data tablet available on
[

AFIT's system. Since the 1light pen was not available on
AFIT's system, its interrupt handler was removed from the

driver to conserve space. The ablility to easily add new in-

77

N S— (AT e — RV R T 1.t T S - . T Al R AR

o snn SO ey A 2 a B

put devices to the system was malntalned with AFIT!'s device

driver,

The same UNIX I/O system calls that were supported hy
the original driver are also supported by AFIT's version of
the driver. Although, the routines supporting the stty and
gtty system calls had to be completely rewritten due to

changes in the way UNIX version seven handles these calls,

Overall Design

The driver was designed in a top-down structured approach
to facilitate programming and maintenance. It was designed
for easy addition of more VG input devices such as the joy-
stick and control dials.

The driver was designed around four sub-devices (also
called minor devices) of AFIT's display system; the GPU: data
tablet, alphanumeric keyboard, and function switch box. These
minor devices were assigned minor device numbers 0, 1, 2, and
3 respectively. The structure chart in Figure 21 illustrates
the routines needed to process user program I/0 requests on
the four minor devices and the routines needed to process in-
terrupts generated by the four minor devices.

The UNIX routines represented by level zero of the
structurechart were described in chapter three. The routines
in level one of the structure chart are the major device
routines called by UNIX. The major device routines call the
minor device routlnes in level two of the structure chart.

The open(2), close(2), read(2), and write(2) system

calls cause UNIX to call major device routines vgopen,

T T

0 R AN 7 SRS i Sl b -

b Mwﬂhﬁam

T

uldtrse@ Jda9ATJaQg 99TA2Q *Te¢ I1d
L]
JquT I3UT
wnu.ﬁ mvc 93T 3TaM pBad peaa | |asoto asoto| | uado uado
= -1p =y =1p =q: -3 =q -3P
J3ut J3ut L3139 K118s ELR 7 93TaM pBal pBaJI 9s0T0 3soTd uado uado
=S] -d3} tapqys ~3A -sJ -dg -5 -q1 -sJ -ds -s3 -dg
{
Q 9 \)
JUIIA T32013A 33 TaIMIA pEaJIA 3s0oTo8A uadoBa
—
XINQ

79

™ A A i oot e

B 2R s S s N IS el .:.Jﬁlmw< e

vgclose, vgread, and vgwrlte respectively. The stty and gtty
system calls cause UNIX to invoke the vgioctl major device
routine, All of these major device routines are passed a
minor device number which determines which minor device rou-

tines to call. For example, the I/0 system call

open("/dev/gpu", mode);

I v ———

causes UNIX to invoke the major device routine vgopen,
passing it minor device number zero (for the GPU minor device).
This minor device number causes vgopen to call minor device

routine gpopen.

Display system interrupts cause UNIX to invoke the vgint
routine. This routine determines which minor device generated
the interrupt, then calls the appropriate minor device inter-
rupt handler.

A new minor device can be added to the system by simply
adding the new minor device routines to level two of the
structure chart. For instance, if a joy stick input device
is.added to the sytem then minor device routines Jjsopen,
Jsclose, jsread, Jswrite, and Jjsintr could be easily added
to appropriate places in level two of the structure chart.

A new character oriented special file, "/dev/jst", would be
ccreated with minor device number equal to &.

With the overall design in mind, the implementation

detalls are now presented,

80

Implementation

This section first describes the user level implementa-
tion detalls. This is followed by a complete description of

the driver routines,

User Level Implementation., A character oriented special

file was created for each of the VG minor devices (see Chapter
VIII for details on creation of these special files)., These
files were named gpu, dtb, kbd, and fss for the GPU, data
tablet, alphanumeric keyboard, and function switch box re-
spectively. These four specilal files were created with major
device number 22 which is the major device number associated
with the VG display system. Minor device numbers 0, 1, 2,

and 3 were assigned to the gpu, dtb, kbd, and fss special
files respectively. ‘

The four special files were all attached to the /dev
directory. Therefore, they have pathnames /dev/gpu, /dev/dtb,
/dev/kbd, and /dev/fss. A user program requests I/0 on a VG
minor device by first specifying the pathname of the asso-

cilated special file as an input parameter to the open(2)

system call. This opens the specified VG minor device for

access. The open(2) system call returns a file descriptor

to the user program to be passed as an input parameter on

all subsequent I/0 requests on the speclal file associated
with the minor devlice. When finished with the minor device,
the user program closes the assocliated special file by passing
the file descriptor as an input parameter to the close(2)

system call. The specific detalls of user program I/0 on

- 2 e 5.
PR IT P) TR W

st e B At

P —

each of the four minor devices 1s presented next, All ex-
amples are given 1n the C programming language,

The GPU Minor Device, The GPU minor device 1is

accessed via the special file /dev/gpu. User program I/O
requests performed on this flle are described here,

Open /dev/gpu. The /dev/gpu special file 1s

opened for I/0 access via a C language statement of the form

gpufd = open("/dev/gpu",2);

where gpufd (gpu file descriptor) represents a variable of
type integer. The open(2) system call returns a file des-
criptor which is placed in variable gpufd. This file des-
criptor is used with all subsequent I/0 requests on file

/dev/gpu.

Read /dev/gpu. The /dev/gpu speclal file is

read by a C language statement of the form below, The

statement

m = read(gpufd,addr,n);

requests that n bytes be read from the VG display system's
RBU and placed in a user buffer that has starting address
addr. The number of bytes actually read is placed in integer
varlable m.

Write /dev/gpu. The write(2) system call is

not supported on the GPU minor device, Therefore, an I/0
error 1s flagged if a user program invokes the write(2)

system call on speclal file /dev/gpu.

82

Stty /dev/gpu. When invoked on special file

/dev/gpu, the stty system call 1s used to either write to a
§ display system register addressed by the user or invoke one

of flve speclal functions. The form of the call is

: stty(gpufd,info);

where gpufd 1s an Integer varilable containing the file

descriptor that was returned when the GPU minor device was

e P EENEF DTN P

opened and info is the beglnning address of an integer array
of length three (int info[3]).

j To write to a display system register, info[0] is loaded
with the register address and info[l] is loaded with the data
to be written. Next, the stty system call is invoked. The

L

following statements illustrate how the call is invoked,

info[0] = display system register address;
info[1] = data;
stty(gpufd,info);

Five special functions may also be invoked with the sttty
system call. The following statements illustrate how a
special function is invoked.

infol0]

. infol1]
F. | . info[2]

function identifier;
data (1if required);
data (if required);

Table I summarizes the five special functions available,

83

“AD=A11S 582 AIR FORCE INST OF TECH WRISHT-PATTERSON AFS OM SCHOO--ETC F/@ 9/2
A W:: I:SEDSD!VICE DRIVER FOR THE VECTOR GENERAL 3408 GRAPHICS==ETC(U)
UNCLASSIF!ED AFIY/.CS/HA/OIM

' _m

3 itabic . 7 g ah SR R Lt S i i ot o 2 .

Table I, Stty Special Functilons

infolOJ infol1] | infol2]
Function Function Performed
Identifier Data Data !
~1 RBU Value Store value at RBU
Address Address 1
-2 - - Perform RBU reset ‘
-3 - - Suspend GPU processing of ?
user's display list
~4 - - Restart GPU processing of
user's display list
-5 Integer - Set the data tablet inter-
value rupt mask to the specified
from 0-15 value
Gtty /dev/gpu. When invoked on special file
/dev/gpu, the gtty system call is used to read display éystem

registers. The following statements illustrate how a display
system register is read via the gtty system call. 1In this
example, info 1is a variable of type integer.
info = address of a display system register;
gtty(gpufd,info);

"In the above example, the data read from the specifiled

display system register 1s returned in the integer variable

named info.

Close /dev/gpu. A user program closes the

/dev/gpu special file with the following statement:

close(gpufd);

84

TN BN

i
!
i

where integer variable gpufd contains the file descriptor
returned when the flle was opened.

The Data Tablet Minor Device, The data tablet

minor device 1s accessed via the special file /dev/dtb, User
program I1/0 requests performed on this file are described here,

Open /dev/dtb. The /dev/dtb speclal file is

opened by a statement of the following form.
dtbfd = open("/dev/dtb",2); 1

This statement places a file descriptor in integer variable

dtbfd (data tablet file descriptor).

Read /dev/dtb. The data tablet input device

1s read by a C-language statement of the following form,

n = read(dtbfd,&buf,m);

In this statement, m is the number of x-y coordinate pairs
requested, buf 1is an integer array that must be at least 3m
in length, dtbfd 1s an integer variable containing the data
taSlet file descriptor, and n is an integer variable which is
assigned the actual number of x-y coordinate pairs read. For
each x-y coordinate pair read, three pieces of data are re-
turned; (1) an x coordinate value, (2) a y coordinate value,
and (3) a data tablet interrupt ID which indicates which
type of data tablet interrupt generated the x-y coordinate
pair. During a read, these data "triples" are placed 1n the
buf array. Thils 1s why the buf array must be at least 3m in

length.

Ry St i

PR

Table II. Data Tablet Interrupt IDs

Data Tablet Interrupt ID Returned
Interrupt Type To User Program

PRS 1

PNN 2

YOS I

X0s 8

Four different types of interrupts may be generated by
the data tablet input device; (1) the pressure switch on the
data tablet stylus 1s depressed (PRS), (2) the data tavlet
stylus is within the "near" zone above the data tablet (PNN),
(3) the data tablet stylus is moved off scale (i.e., out of
bounds) in the y direction (Y0S), or (4) the data tablet”®
stylus is moved off scale (i.e., out of bounds) in the x
directicn (X0S) (Ref 17:2-83). Table II contains the ID
number for each type of data tablet interrupt.

A user program is allowed to specify which data tablet
interrupts it will recognize. This is accomplished by in-
voking a special function via the stty system call. The
following code illustrates how the special function is in-
voked.

info[0] = -5;

info[1] = data tablet interrupt mask value;
stty(gpufd,info);

This special function was already presented in the section

entitled Stty /dev/gpu., Table III contains all the data

A

Table II1I. Data Tablet Interrupt Masks

g Interrupt Mask Interrupts Recognilzed
= Value X0S YOS | PNN PRS
] 0
N 1 X
| 2 X
i 3 X X
; 4 X
: 5 X X
6 X X
. 7 X X X
| 8 X
9 X X
10 X X
11 X X X
| 12 X X]
13 X X X
p- 14 X X X
- 15 (default Value) X X X X

| tablef interrupt mask values along with the respective data

! tablet interrupts recognized. Notice that with the default

i interrupt mask value (15) the user program recognizes all
four types of data tablet interrupts.

The following C-language code 1s an example of a user

;l; program that reads one x-y coordinate pair from the data

i
‘;1 tablet input device. The x-y coordinate pair returned must
ié be generated by a PRS interrupt from the data tablet stylus.
g 1. main()
3 2. {int gpufd, dtbfd, n, buf[3];
.) 3. gpufd = open("/dev/gpu",2);
4 4, dtbfd = open("/dev/dtb",2);

i 5. buf[0]=-5;

' 6. buf(1]=01;

7. stty(gpufd,buf);

; 8. n=o0;
. 9. while (n<l) n=read(dtbfd,&buf,l);
X 10.
s 11. close(dtbfd);
F
-

f: | 87

12. close(gpufd);
13. }

In thls program the data tablet interrupt mask 1s set

to 1 (lines 5-7). This ensures that only x-y coordinate
palrs generated by a PRS interrupt will be returned to the
user program.

A "while" control statement 1s used to execute the
read(2) system call (line 9). This is done because the
read(2) system call returns a -1 if no input data is available,
The while statement continues to invoke the read(2) system
call until input data is read, The while statement 1s neces-
sary because the device driver software does not support a
"time-out" on a read. That 1is, the device driver software
does not wait for input 1f no Input data is readily availlable
when the read is invoked,

After data 1is read, buf[0] contains the x coordinate,
buf[1] contains the y coordinate, and buf[2] contains the
data tablet interrupt ID (which will be 1 in the example pro-

gram above.)

Write /dev/dtb, The data tablet is a read

only device. Therefore, an I1/0 error 1s flagged by UNIX if
a user program attempts to write to the data tablet.

Stty /dev/dtb. The status of the data tablet

input device can be changed by a user program via the stty

system call. The form of the call 1is

stty(dtbfd, x);

RSP

e g= ol

R s i oo

» y RaaaY oo
. e e e — e a -

ap

where x 1s an integer variable containing a status value for
the data tablet and dtbfd 1s an integer variable containing
the file descriptor for file /dev/dtb.

Gtty /dev/dtb., A user program fetches the

status of the data tablet input device via the gtty system

call. The form of the call is given below.
gtty(dtbfd, x);

This call places the status of the data tablet in the integer
variable x.

Close /dev/dtb, The data tablet minor device

i1s closed by a user program with the following statement.
close(dtbfd);

The integer variable dtbfd contains the file description for
file /dev/dtb.

The Alphanumeric Keyboard Minor Device. The alpha-

numeric keyboard input device 1s accessed via the special
fiie /dev/kbd. User program I1/0 requests performed on this
file are described here.

Open /dev/kbd. The /dev/kbd special file is

opened by a statement of the following form

kbdfd = open("/dev/kbd",2);
This statement places a file descriptor in integer variable

kbdfd (keyboard file descriptor).
Read /dev/kbd. The alphanumeric keyboard is

89

.

—
e

XSl O e

A

i

read with a statement of the followling form,

n = read(kbdfd,&buf,m);

In this statement, m 1s the number of characters requested,
buf 1s an integer array of length m (into which the input
characters will be read), kbdfd 1s an integer variable con-
taining the file descriptor, and n 1s an integer variable
which 1s assigned the actual number of characters read (or
-1 i1f no input characters are avallable at the time of the

read). The ASCII representation of the 1lnput character is

the value returned to the user program,

Here again, a while statement may be used to wait for
input to become available., For example, the C-language
statemehts

n=0;
while (n<l) n=read(kbdfd,&buf,l);
continue invcking the read(2) system call until one character

1s read from the VG's alphanumeric keyboard input device.

Write /dev/kbd. The VG's alphanumeric key-

board is a read only device. If a user program attempts to
write to 1t then UNIX flags an 1/0 error condition,
Stty and Gtty /dev/kbd. The stty and gtty

system calls allow a user program to set and get the status
of the alphanumeric keyboard input device. The forms of the

calls are given below.

stty(kbdfd,x);
gtty(kbdfd,x); .

> v

Sl

These calls function Just like the calls described under

- e it bk

Stty /dev/dtb and Gtty /dev/dtb.

Close /dev/kbd. A user program closes the

alphanumeric keyboard with the following system call,

close(kbdfd); i

The Function Switch Box Minor Device. The function

[

switch box input device 1s accessed via the special fille
/dev/fss. User program I/0 requests performed on this file
are described here.

Open /dev/fss. The /dev/fss special file is

opened by a statement of the following form.

fssfd = open("/dev/fss",2);

This statement opens the function switch box input device
and places a file descriptor in the integer variable fssfd
(function switches file descriptor).

Read /dev/fss. The function switches are read

wlth a statement of the following form.

n = read(fssfd,&buf,m);

In this statement, m is the number of values requested, buf

ds an integer array of length m (into which the input values

wlll be read), fssfd 1s an integer variable contalning the
file descriptor, and n is an integer variable which is
assigned the actual number of characters read (or -1 if no

input values are avallable at the time of the read),

Once again, a while statement may be used to walt for

input to become available. For example, the C-language

statements

n=o;
while (n<l) n=read(fssfd,&buf,l);

1 continue invoking the read(2) system call until one value is
4 : read from the VG's functlcn switch box 1lhput device,
‘ % Write /dev/fss. The VG's functlion switch box

| - 1s a read only device. If a user program attempts to write

to it, then UNIX flags an I/0 error condition.

E Stty and Gtty /dev/fss. The stty and gtty
system calls allow a user program to set and get the status
‘ of the function switch box input device. The forms of the

calls are given below.

i stty(fssfd,x);
a gtty(fssfd,x);

4 These calls function just like the calls described under Stty

- /dev/dtb and Gtty /dev/dtb.

Close /dev/fss. A user program closes the

function switch box input device with the following call \
close(fssfd);

In this statement, fssfd 1s an integer varilable containing

P Y W
L]

the file descriptor for flle /dev/fss.
Thls ends the section on user level documentation. The

next section documents the device driver routines. Ei

i

|

7! 92
l

[m——T

T e S

NG ks s e N] R O sl AN T

i
The Device Driver Routines. A complete listing of the :1
VG device driver routines is included as Appendix D. The 1

description of these routines is divided into the following

five sections.

Include Files

Global Data Structures

Common Procedures

Major Device Routines 4
Minor Device Routines i

Sabaar. o
VI &SW N

Include Files. Several "header" files containing

global declarations are included as part of the device driver

s

9 software. These files are 1included via the C programming

language file inclusion operator, #include (Refs 7:86 and
10:1-3). The following eight header files are included in

the device driver software (see lines 72-79, Appendix D).

param.h
buf.h
conf.h
dir.h
user.h
tty.h
proc.h
vg.h

Q@@= OV £ D

These files are all located in the /sys/h directory.
The first seven flles contain global declarations for UNIX
constants and structures, while the eighth file, vg.h, con-

tains global declarations for display system constants. These

L w“mm""ﬂ'm‘w——-—w- T,
EA A bl . N
[Y -

files are referenced as needed throughout the remalning dis-

cussion of the device driver routines.

'<r-v A AR

Global Data Structures. This section describes the

global data structures used by the device driver software.

93

SRR T VI

They are the UNIX proc and u structures, the vgunit array,

e s e i uinaillilD

and the VG minor device switch table (vgdev).

The UNIX proc and u Structures. The UNIX

; proc and u structures are used to pass data and control in-

formation back and forth between UNIX and the device driver

L ot

software. The specific elements of these two structures
referenced by the device driver software will be explained

as they are encountered.

PRIV el o<

The vgunlt Array. The vgunit array was created

to keep track of activity on the four VG minor devices. This

structure is defined below (also see lines 86-90, Appendix D).

1. struct vgstruc {
2. struct clist io;
3. int status;
y, int *vg procp;
: 5. 1} vgunit[&%; ’
Lines 1-4 define a VG data structure, vgstruc, consisting of ‘

three elements; io, status, and vg_procp. Line five declares
an arréy, named vgunit, consisting of four occurrences of the
VG data structure; one for each of the four VG minor devices.
Figure 22a illustrates the data structure created by this

3 code. The minor device numbers are used as indices into the
vgunit array. Therefore, vgunit[0] is associated with the

3 ‘GPU minor device, vgunit[1l] with the data tablet minor
device, etc. The purpose for the io, status, and vg_procp
elements 1s now explained.

Each minor device has a first-in first-out (FIFO) queue

assoclated with it for I/0 purposes. The 1o element of each

94

R

i

o

vgunit: io

gpu

status

Vg procp

1 io

dtb

status

vg_procp

2 io

kbd

status

Vg _procp

3 io

fss

status

Vg _procp

(a)

io: c_cc c_cf c_cl

(b)

AN 7

Fig 22. The vgunit Data Structure

95

-I ' o i ik) ikt i e "’», QOO e S

SHELEMRbD 3 9 W tialta] TR et AETL vt o

minor device data structure is a header for the appropriate
FIFO queue. For example, vgunit[l].io is a reference to
the header of the data tahlet's I/O queue while vgunit[2].io
1s a reference to the header of the alphanumeric keyboard's
I/0 queue.

Each 1o element is further broken down into three fields;
c_cc, c_cf, and ¢c_cl. The c_cc fleld contains the total
number of elements in the FIFO queue, while the c_cf and
¢_cl fields contain pointers to the first and last elements
of the FIFO queue respectively. Figure 22b illustrates the
three filelds of each io element.

The status element of each minor device data structure
indicates whether the corresponding minor device 1s opened

or closed. 1In the case of the GPU minor device it may also

indicate whether the GPU is "running", "waiting", or "sleeping".

The vg_procp element of the minor device data structure
is an indirect pointer to the proc structure of the user
process that opened the minor device. It is an indirect
pointer because it actually points at the u.u_procp element
of the u structure which in turn points at the appropriate
proc structure.

Use of the vgunlt array will be explained more as the
.device driver routines are described.

The VG Minor Device Switch Table. The device

driver software uses the UNIX idea of a device switch table
for calling minor device routines. This table, named vgdev,

is declared and initialized on lines 538-543 of Appendix D.

96

RE—— e ——————

g g

The table 1s declared as a cdeysw structure. This structure

1s defined in UNIX source file /sys/h/conf.h. The vgdev

table 1s used exactly like UNIX's cdevsw table. That is,
each row of the vgdev table contains the addresses of the
open, close, read, write, and I/C control routines associated
i wlth a particular VG minor device. Row zero contalns the
routines for the GPU minor device, row one for the data
tablet, row two for the alphanumeric keyboard, and row three
for the function switches.

The minor devlice number passed to the major device rou-

tines by UNIX is used as an index into the vgdev table to

select the appropriate set of minor device routines. The 1
type of I/0 system call determines which routine within the

set 1s invoked.

Common Procedures. The following procedures are

‘ called from several different places in the driver software. f

4 1. PIN

3 2. POUT
3. gpwait
k. gpurestart
5. pute

o 6. getc

G 7. passc

38 8. sleep

fi 9. wakeup

b 10. psignal

- 11. fuiword

- | . 12. suilword

Routines 1-4 are defined in the device driver program

whlle routines 5-12 are parﬁ of the UNIX source code. A
brief description of each routine 1s given here.

PIN and POUT. The PIN and POUT procedures \

97

== - - e % e -
JE R e o i : I M o e - SN i . . o> N

| 1]

represent the implementation of the Programmed INput and
Programmed OUTput functions described in the Programming
Concepts Manual and the PDP1l Interface Specification (Refs
17:2-5 and 19:8).

The PIN procedure 1is used to read the contents of dis-
play system registers. The address of the register to be
read is passed to PIN as an input parameter. First, PIN
performs a Control Out instruction to load the register add-
ress into the Register Number (RN) field of the interface's
Control Register. The Register Change (RC) bit, Request
Input (RQI) bit, and Interrupt Enable (IE) bit of the inter-
face's Control register are also set by the Control Out in-
struction. This causes the interface to request the desired
data, PIN wailts for completion of the input request then
; reads the data from the interface’s Input Buffer Reglster
‘ (INR) with a Programmed In instruction. PIN returns this

data to the routine that made the call.
The POUT procedure 1s used to write display system
registers. The address of a display system register and the

data to be written are passed to POUT as input parameters.

First POUT performs a Control Out instruction to load the
register address into the RN field of the interface's Control

‘register and to set the RC and IE bits. Next, the data is

fa !
A . Aean e .

written to the specified display system reglster via a Pro-
grammed Out instruction. Finally, POUT waits for the output
operation to terminate then returns.

gpwait and gpurestart. The gpwailt and

! 98 |

RIS - 3 O

" o e o .
R T N R R R

réb W+ 3
i e i,

FY

L g TR R Wl o TN

gpurestart procedures are used to stop and start GPU pro-

cessing. The routines are called by the GPU, data tablet,
alphanumeric keyboard, and function switch box interrupt
handlers (gpint, dtint, kbintr, and fsintr).

The gpwalt procedure is called to halt GPU processing
temporarily. This ensures that the GP bus 1s free for pro-
cessing an interrupt. The gpurestart procedure 1is called
to restart the GPU processor.

putc and getc. The putc and getc routines

are UNIX procedures written in PDPll assembly language. The
source code for these two routines is found in file /sys/
conf/mch_i.s. The procedures are used to manage FIFO queues
of 8-bit bytes.

The putc routine is used to add a character to a FIFO
queue of characters. The procedure accepts two input argu-
ments; (1) the address of a queue header, i.e., an io element
within the vgunit array, and (2) the character to be added
to the queue. Lion's describes in detail how the FIFO queue
is set up and maintained (Ref 10:23-1 to 23-2). Here it
sufflices to say that putc takes care of allocating more space
to the queue, adding the character to the queue, adjusting
the queue pointers (c_cf and c¢c_cl) stored in the queue header,
‘and updating the queue count (c_cc).

The getc procedure is used to fetch characters from a
FIFO queue of characters. The procedure 1s called with the
address of a queue header as an input argument. The getc

procedure takes care of all the overhead required to fetch

99

PRI Y 7 SRR e > B B P N . W AUR
h [- " - 8 £ g

e

ot _ ORI i K e R S P AT O i "
L T : it " ilaitd v DB i i e i i SO L Ly -l Ao BNt 47
C s Eree e o - o e - S ST EGNE

a character from the specifled queue. It fetches the next
character from the queue, returns freed space to the avail-
able list, and adjusts the queue pointers and queue count
stored in the queue header (Ref 10:23-2). If the queue 1is
empty then getc returns a minus one, otherwise it returns

i the character fetched from the queue.

* passc. The passc routine i1s a UNIX procedure
which passes back a byte of Information to the user program
(Ref 11:65). The data 1s placed in the location referenced
by the contents of u.u_base. The procedure updates u.u_base,

! u.u_count, and u.u_offset. If u.u_count goes to zero, sig-
naling the last byte of the user's read, then the procedure
returns a minus one. Otherwise, 1t returns a zero.

sleep and wakeup. The sleep and wakeup pro-

cedures are described in detail by Lions (Ref 10:8-3)., They
i are UNIX routines used to suspend and reactivate user pro-

cesses.
The sleep routine 1s used to suspend the process that is

currently running. The procedure accepts two input para-

meters; (1) the reason for "sleeping" and (2) the priority

with which the process will run upon being "awakened". 1
The wakeup procedure 1s invoked to reactivate a

Msleeping" process. The procedure is passed the reason for

N N Y

sleeping as an input parameter. As stated by Lions, the
procedure "simply searches the set of all processes, looking
for any processes which are '"sleeping" for a specified reason,

and reactivates these individually" (Ref(10:8-3). The

100

"awakened" processes enter the scheduling queue at the priority

T

specified when the process was put to sleep (Ref 11:;20),
psignal. The psignal procedure 1s a UNIX pro-

cedure which signals a software interrupt to the system, A
detalled description of software interrupts 1s given by Lions
(Ref 10:13-1 to 13-6).

The psignal procedure accepts two input parameters; (1)
a polinter to a proc structure and (2) an interrupt signal.
UNIX recognizes 15 different software interrupt signals. They
are defined in UNIX source file /sys/h/param.h. Psignal
stores the specified interrupt signal in the p_sig element of
the specified proc structure. The system checks p sig peri-
odically to determine if a software interrupt signal 1s pending.
If there is, then it 1s processed. Only one software inter-
rupt can be pending for a prccess at any given time (Ref 10:
13-1).

fuiword and suiword. The fuiword and suiword

procedﬁres are UNIX procedures written in PDPll assembly lan-
guage. These procedures are used to fetch and store 16-bit
data words in the user address space.

The fuiword procedure (Refs 10:10-1 and 11:8) is passed
a user space virtual address as an input argument., The pro-
cedure fetches and returns the contents of the location ad-
dressed by the input argument. If an error occurs in thils
process, the procedure returns a minus one.

The suiword procedure (Ref 11:8) is passed a user space

virtual address and a data word as input arguments. The pro-

101

==

a7

X o . L .
e e a——— A e — . '

cedure stores the 16-bit data word in the specified location
of the user address space.

MajJor Device Routines, The generic or major device

routines for the VG display system are vgopen, vgclose, vgread,
vgwrite, vgioctl, and vgint. These are the routines invoked
by UNIX ¢to process the device dependent portion of dis-
play system I/0. Each major device routine performs the func-
tions that are common to all of thelir subordinéte minor de-
vice routines, then calls the appropriate minor device routine.
The vgopen, vgclose, vgread, vgwrite, and vgloctl routines
use the minor device number passed from UNIX to call the minor
device routines via the minor device switch table, vgdev,
The vgint interrupt handler uses a case statement keyed on
the interrupt ID to call the appropriate minor device inter-
rupt handler routine. Each of the major device routines are
now described.

vgopen. The vgopen routine (lines 548-559,
Appendix D) 1s called by UNIX to process the device dependent
portion of an open(2) system call. The routine is passed a
minor device number as an input argument. The minor device
number 1s used as an index into the vgunit array to check the

status of the corresponding minor device. If the minor device

‘has already been opened then an I/0 error code 1s placed in
u.u_error and a return 1s made to UNIX. Otherwise, the proc
structure pointer, vgunit[mdev].vg_procp, is initialized to
reference the proc structure of the process opening the minor

device. Next, the appropriate minor device open routine is .

102

Ay 1 ST . PO

called via the vgdev table, After the minor device routine
returns, display system interrupts are enabled. This is
accomplished by performing a Programmed Out to set the Inter~
2 rupt Enable (IE) bit of the interface's Control Reglster,
Finally, the status of the minor device 1is set to OPEN then
the routine returns control to UNIX,
i vgclose. The vgclose routine (lines 584-590,
Appendlx D) 1s called to process the device dependent portion
of a close(2) system call. UNIX passes a minor device number
1 as an 1input parameter. The routine uses the minor device
‘J number to call the approprlate minor device close routine via 1

the vgdev table, enables display system interrupts, and sets

the status of the appropriate minor device to zero indicating |
that the minor device is now closed, !
vgread. The vgread routine (lines 562-568, 5
i Appendix D) 1is called to process the device dependent portion [
of a read(2) system call. The minor device number passed as

an 1nput parameter 1s used to call the appropriate minor

device read routine via the vgdev table, then display system

interrupts are enabled.
vgwrite. The vgwrite routine (lines 573-579,
Appendix D) is invoked as the result of a write(2) system

call. The minor device number passed as an input argument is

e e -l el

used to call the appropriate minor device write routine via
the vgdev table, then display system interrupts are enabled.
i vgloctl. The vgloctl routine (lines 628-632,

Appendix D) 1s invoked as the result of a stty or gtty system .

" 103

VN dSal, 4 2 g

T — . \ o X YT~ ST —. : y - N T v

e R

L2

‘statement's default condition. An error message 1s printed

call (see 1octl(2)), UNIX passes a minor device number and
a flag as input arguments. The minor device number 1s used
to call the appropriate minor device I/0 control routine via
the vgdev table. The flag indicates whether the call 1s a
stty or a gtty call. This flag is passed on to the minor
device I/0 control routine.

vgint. The vgint routine (lines 595-627,
Appendix D) 1s the major device interrupt handler for the VG
display system. It 1s called by UNIX when a display system
event interrupts the PDPll processor, First, the interrupt
ID 1s obtalned by performing a Programmed In on the inter-~
face's Status Reglster. Next, the processor priority is set
to level seven, the highest possible priority, to prevent all
other interrupts from interfering with processing of the

current interrupt.

Next, a case statement, keyed on the interrupt ID, 1s
used to call the appropriate minor device interrupt handler.
A Progfammed Out 1s performed to set the Interrupt acknow-
iedge (AKC) and Interrupt Enable (IE) bits of the interfaces
Control Register. Finally, the processor priority level is
set low and control is returned to UNIX.

Unrecognized interrupts are processed by the case

and the interface 1s reinitialized.

This concludes the description of the major device

routines. The minor device routines are now described,

Minor Device Routines. The routines associated

104

with the GPU, data tablet, alphanumerilc keyboard, and func-
tion switch box minor devices are described in this sectilon.
The routines are presented by minor device.

GPU Routines. The GPU minor device routines

handle the GPU portion of the VG dlsplay system., The routines

include gpopen, gpclose, rbread, gpwrite, and vgsgtty.

open. The gpopen routine (lines Hiai="~ "~

460, Appendix D) is called by vgopen. The routine locks the
user process in core, initlalizes the interface, and loads
the interface's Base Address Register (BAR).

The user process 1s locked into core to prevent process
swapplng during dilsplay system access. This 1s accomplished
by ORing the SSYS and SLOCK flags (defined in /sys/h/param.h)
into the p_flag element of the process's proc structure
(Ref 11:3).

The interface 1s initialized by issuing a Programmed
Out instruction to set the Initialize (INIT) bit of the
interface's Control Register.

The interface's BAR 1s loaded from the appropriate PDP11
user space segmentation register. If the user process does
not share a text segment then the base address 1s taken from
the first User Instruction Space Address Register (UISA)
located at virtual address 01776U40. This register is called
APR in the driver software (line 33, Appendix D). It con=-
tains the address of the zeroth page of the user address
space.

If the user process does share a text segment with

105

PR

AW e A j
e & B e . R

o

AT«

i

i G iane s ¥ O P L R Ir oa - i i
o bl i R . a1 e b kR 4 S5 Tt e o eI
M T T L e,

another process then the zeroth page of the user address
space may not be contiguous with the rest of the user pro-
cess. In this case, the address of the first page of the
contiguous portlon of the user's address space 1s calculated
and loaded into the interface's BAR.
gpclose. The gpclose routine (lines

487-492, Appendix D) 1s called by vgclose, The routine
clears the GPU command register (display system address 07),
stops the transfer of the refresh list from the RBU to the
DCU, and unlocks the user process from core,

The GPU command reglster 1s cleared by writing zeroes
to it via a Programmed Output (POUT). Transfer of the re-
fresh 1ist is inhibited by writing a 010 to the START/STOP
field of the DCU control register (display system address
0400) (Ref 20:2-6). The user process is unlocked from core
by removing the SSYS and SLOCK flags from the appropriate
proc structure's p_flag element.

rbread. The rbread routine (lines 463-

475, Appendix D) is called by vgread to process a read request
on the GPU minor device. However, this routine really has
nothing to do with the GPU. Instead, it allows a user pro-
gram to read the contents of the RBU, 1.e., read the refresh
1ist. This capability was provided so that the refresh list
could be read out, converted to raster form, and dlsplayed on
a raster scan device. |

The routine uses u.u_count, u,u_base, and u,u_offset

which contain the number of words to be read, the address of

106

o A Y RPN W %

s

LY Tt ek Sk e A e o
e L) -f\a-:u "";,“".f'l):‘.‘ e

a user buffer, and current offset in the file, If u,u_count
and u.u_base do not start on a word boundary then they are
rounded down to the next word boundary. The routine reads
u.u_count words from the RBU starting at u.u_offset, The
data read is placed in the user buffer addressed by u.u_base,
This is accomplished with the passc routine described earlier,

The POUT procedure 1is used to load the RBU's memory
address register (rbumar) with the address from u.u_offset.
This causes the contents of the addressed RBU word to be
loaded into the RBU's data Register (rbudat). The PIN pro-
cedure 1s used to read the contents of rbudat., The data
read 1s placed in the user's buffer with the passc routine,
This entire process 1s repeated untll u.u_count words have
been read from the RBU.

gpwrite. The gpwrite routine (lines
k79-482, Appendix D) is called by major device routine vgwrite.
Since the GPU minor device cannot be written, the routine
simply loads u.u_error with the I/0 error flag, EIO, and
returns.
vgsgtty. The vgsgtty routine (lines 100-

147, Appendix D) 1s called by major device routine vgioctl
to process the device dependent portion of the stty and gtty
system calls. The stty and gtty system calls are handled
differently by UNIX version seven than by UNIX version six,
Therefore, vgsgtty had to be completely rewritten,

The structure chart in Figure 23 1llustrates the func-

tions carried out by the vgsgtty routine. First, vgsgtty .

e R4

107

IPIRERscs .

i
,,,M_ auTpqnoy £133s3a sy3 Jo udrsag ‘€2 ITd
A
i
i
w, EY:EEEE - I23STaaY uotTjouny I137S139Y
z J0aIq wajshs Lv1d TeTo0dg wagshg Le1d
W 93 TIM FSTQ B 93TJIM B 93N09XY -STQ B pBdY
puBWWO) a/ﬁm £209 =4
umouun 3 33 ~
—~/)
£413s3a
- R TVRREA e ey . WO -3 e SR T NPT S TERACe e AR DR N BBt :. oy .] "

it

v e o s e

retrieves the address of the user's data array from u,u_argl2],
Next, the routine uses a case statement keyed on the flag in-
put argument to control whether a gtty, stty, or unknown com-
mand 1is processed,

In the gtty case, the contents of a display system
register are read and passed back to the user, This is ac-
complished by fetching the address of the display system
register from the first location of the user's data array.
This 1s done with the UNIX fulword function. Next, the spe-
cified display system register is read with the PIN routine,
Flnally, the data 1is passed back to the first location of the
user's data array via a call to the UNIX suiword function.

For the stty case, all three words of the user data
array are fetched via three calls to the fuiword function.

A case statement keyed on the value retrieved from the first
location of the user's data array determines what to do next.
If the case value is -1, -2, -3, -4, or -5, then the asso-
clated special function 1s executed; otherwise, a display
system reglster is written.

With the -1 case, the data retrieved from the third
word of the user's data array is written to the RBU location
addressed by the value retrieved from the second word of the
user's data array. This 1s accomplished with the POUT func-
tion.

For the -2 case, a call 1s made to the RBU reset proce-
dure, RBURSET. This function resets the RBU by clearing

both of the RBU's buffers. It also initializes the RBU's

109

Ll idisiimid N L S

status and control registers (Ref 20:3-6),

The -3 and -4 cases invoke the gpwalt and gpurestart
routines respectively. These routines were described in the
section on common procedures,

With the -5 case, the data retrieved from the second
word of the user buffer is loaded into the data tablet's in-
terrupt enavle mask, dtintmask.

Any number of special functions can be added to the
system by simply adding more cases to the software,

If the case value is not -1, -2, -3, -4, or -5 then it
1s interpreted as the address of a display system register,
In this case, the data retrileved from the second location of
the user's data array is written to the display system register
addressed by the value retrieved from the first location of
the user's data array.

Data Tablet Routlnes. The data tablet minor

device routines handle the data tablet input device, They
are dtopen, dtclose, dtread, dtwrilte, fskbdtsgtty, and dtintr,
dtopen. The dtopen routine (lines 213-
217, Appendix D) 1s called by vgopen to enable interrupts
from the data tablet input device., This is accomplished by
using a POUT to set the interrupt enable (IEN) bit of the data
tablet's status (DTS) register (Ref 17:2-82).
dtclose. The dtclose routine (lines
221-225, Appendix D) 1s called by vgclose to disable inter-
rupts from the data tablet and to flush the data tablet in-

terrupt report queue. Interrupts are disabled by invoking

110

M 200 Ende)

N H
. LT ey
.

the POUT functlon to clear the IEN bit of the DTS reglster,

The interrupt report queue 1s emptied by invoking the getc
routine on the queue until it is completely empty.

dtread. The dtread routine (lines 236-
247, Appendix D) is called by vgread. The u,u_count variable
contalns the number of x-y coordinate pairs requested by the
read(2) system call.

The dtread routine fetches an x-y coordinate pair and
the associated interrupt identifier from the data tablet in-
terrupt report queue and passes them back to the user buffer
via calls to the UNIX passc procedure. This continues until
u.u_count goes to zero or until the interrupt report queue is
empty, whichever occurs first.

dtwrite. The dtwrite routine (lines
232-233, Appendix D) is called by vgwrite. Since the data
tablet is a read only device, the routine simply loads
u.u_error with the I/0 error flag, EIO, and returns,

fskbdtsgtty. The fskbdtsgtty routine

(lines 151-170, Appendix D) 1is called by vgloctl to process
the device dependent portion of the stty and gtty system
calls with respect to the function switch box, alphanumeric
keyboard, and data tablet minor devices. As with the vgsgtty
routine, the fskbdtsgtty routine had to be completely re-
written due to differences between UNIX versions six and
seven.

The routine 1s passed a minor device number and a flag

as input arguments. The flag 1s either TIOCGETP for a gtty

111

.
Y + e - -
[t <

TR PP L .

N At N - A aewn

call or TIOCSETP for a stty call, The minor device numher
is either 1, 2, or 3 for the data tablet, alphanumeric key- }
board, or function switch box minor devices.

First, the routine retrieves the address of the user's
data array that was specified in the system call. This
address 1s retrieved from u,u_arg[2]. Next, a case statement |
keyed on the flag input argument is used to process either a
stty or a gtty.

In the gtty case (flag=TIOCGETP), the status of the
speclified minor device 1is passed back to the first location
of the user's data array via a call to suiword,

In the stty case (flag=TIOCSETP), the status of the
specified minor device is set to the value retrieved from the
first word of the user's data array.

dtintr. The dtintr routine (lines 250-
264, Appendix D) is called by vgint to process interrupts
generated by the data tablet input device. The data tablet's

status register 1s read with a PIN to obtain the interrupt

1déntifier. The interrupt ldentifier is ANDed with the data
tablet interrupt mask, dtintmask, to see if the interrupt is
recognized by the user program. If it is, then the data
tablet's x and y data registers are read. The x-y coordinates
and the interrupt identifier are then placed on the data
tablet's interrupt report queue via calls to the UNIX putc
routine. Before returning, the routine enables data tablet
interrupts by setting the IEN bit of the data tablet's status !

register.

112

The Alphanumeric Keyboard Routines, The alpha-

numeric keyboard minor device routines handle the alphanumeric

keyboard input device. They are kbopen, kbclose, kbread,

kbwrite, fskbdtsgtty, and kbintr, The fskbdtsgtty routine

was described under the data tablet routines., Therefore, it

1s not included here,
%' kbopen. The kbopen routine (lines 269-
jr 271, Appendix D) is called by vgopen to enable interrupts
from the alphanumeric keyboard input device. This 1s accom-
plished by setting the KIE bit of the keyboari register (Ref
17:2-84).

kbclose. The kbclose routine (lines

276-280, Appendix D) is called by vgclose to disable inter-
rupts from the alphanumeric keyboard and to flush the key-
board's interrupt report queue. Interrupts are disabled by
clearing the KIE bit with a call to POUT. The interrupt j
' R report queue 1is emptied by repeatedly invoking the getc rou-
tine on the queue.

kbread. The kbread routine (lines 298-

315, Appendix D) 1s called by vgread. The routine fetches a
character from the keyboard's interrupt report queue and
passes 1t to the user program via a call to the UNIX passc
routine. This continues until u.u_count goes to zero or until

the interrupt report queue is emptied, whichever occurs first,

. + ‘.- . g '-:4 L e
LB A A AL & | e s

The routine will also terminate i1f the character read is a

carriage return ('/n') or a control D ('/004'),

kbwrite., The kbwrite routine (lines

113

294-297, Appendix D) i1s called by vgwrite, Since the alpha-

numeric keyboard 1s a read only device, the routine simply
loads u.u_error with the 1/0 error flag, EIO, and returns.

kbintr. The kbintr routine (lines 320-
326, Appendix D) is called by vgint to process interrupts
generated by the alphanumeric keyboard lnput device. The
routine uses the PIN function to read a character from the
low order byte of the keyboard register, Next, the routine
uses the putc function to place the character on the key-
board's interrupt report queue., Before returning, interrupté
are enabled for the keyboard.

The Functlon Switch Box Routines. The minor

device routines assoclated with the function switch box in-
put device are fsopen, fsclose, fsread, fswrite, fsintr, and
fskbdtsgtty. Once again, fskbdtsgtty has already been des-
cribed under the data tablet routines.

fsopen. The fsopen routine (lines 337-
340) is called by vgopen to enable interrupts from the func-
tion switch box input device. This 1s accomplished by setting
the IE0 and IEl1l bits of the Function Switch Control Register
(FSKC) (Ref 20:2-22).

fsclose., The fsclose routine (lines 344-
348) 1s called by vgclose to disable interrupts from the
functlion switch box input device and to flush the function
switch box 1interrupt report queué. Interrupts are disabled
by using a POUT to clear the IEQ0 and IEl bits of the FSKC

reglster. The interrupt report queue 1is emptied by succes-

114

sive calls to the getc functiaon,

fsread. The fsread routine (lines 364-
392) 1is called by vgread to transfer u.u_count function
switch readings to the user program. The routine first
fetches a flag and a function switch value from the function
switch box interrupt report queue. The function swltch value
is converted to an integer between 1 and 16. The flag indi-
cates whether the function switch value came from the S00-S.
group or from the S16-S31 group. If the function switch
value came from the S16-S31 group, then the value plus 16 is
returned to the user program; otherwise, the value itself is
returned. This continues until i.u._count goes to zero or
the function switch box interrupt report queue 1is emptied,
whichever occurs first.

fswrite. The fswrite routine {(lines
359-362) is called by vgwrite, Since the function switch
box is a read only device, the routine simply loads u.u_error
with the I/0 error flag, EI0, and returns.

fsintr. The fsintr routine (lines 397-
412, Appendix D) is called by vgint to process interrupts
generated by the functlion switch box input device. The rou-
tine determines whether the function switch depressed 1s in
the S00-S15 pr the S16-S31 group. If in the S00-S15 group,
the FSLO reglister 1s read, else the FSL1 register is read,
The contents of the reglster are placed on the functlon
swltch box interrupt report queue with a flag indicating

which register the data came from. The routine enables

e G

- 20— 3

interrupts from the function swltch box before returning.

Summary

This chapter presented the device driver requirements,
device driver design, user level documentation, and documen-
tation of the device driver code itself. The next chapter
deals with the modifications made to McCallum's original

software so that 1t would run on AFIT's system,

116

- <.Lg-.-o‘-‘-m~—‘ - -

< Vi R A PIREALE. TR Oy e " PR L ki 1 E s
m i - s, At 2= . st Dl L W i b i ebmtne BT 2

VII Device Driver Updates i

Some changes were made to the orlginal device driver
obtalned from the Unlversity of Texas so that it would run
on AFIT's system. These changes fall into three categories;
(1) changes due to space limitations on AFIT's PDP11/60, (2)
changes due to display system differences, and (3) changes
due to differences between UNIX versions six and seven, i

These three categories are discussed in this chapter,

Space Limitations

The original VG device driver would not fit under AFIT's
current PDP11/60 system configuration. Therefore, the driver %

had to be trimmed downed in size. The following three fea-

tures were removed from the original driver to make it smaller;
(1) the level one graphics support, (2) the code intended to
enable timeouts to occur during input device reads, and (3)

the code supporting the VG light pen device,

Removal of Level One Graphics Support. In the search

for ways to trim down the size of the device driver, it was
decided to eliminate McCallum's level one graphics support.
This level did not use the GPU and therefore did not exercise
the full potential of the display system,

’ In the level one graphics support, the RBU was treated

as minor device number 1 with rbopen, rbread, rbwrite, rbclose,
rbsgtty, and rbintr as the minor device routines., The rbopen,

rbclose, and rbwrite routines were reémoved from the driver

software. Since the rbread and rbsgtty routines were shared

117

it s s e

T il

with the GPU minor device, they were not removed, After re-
moval of the RBU minor device, the name rbsgtty no longer had
meaning. Therefore it was changed to vgsgtty,

The special function named staticopy was removed from
the system. This routine was used to copy the static segment
of the RBU from one RBU buffer to the other when the RBU was
in double buffer mode. This was a rough attempt to allow static
segments to run better for the level one graphics routines.

Removal of Code for Timeouts. The original driver con-

talned code intended to allow a read invoked on a VG input
device to timeocut 1if no input was received within a specified
perlod of time. The author of the original driver never got
this feature to work. Therefore, it was removed to reduce
the size of the driver software. The timeout code removed
included the vgwait function, the tmoutdev function, the time
and dtime elements from the vgunit structure, the constant
GPU_timeout, and the code within the kbread and fsread rou-
tines intended for implementation of the timeout feature,

Removal of Code for the Light Pen. Since AFIT's VG dis-

play system does not have a light pen device, the code in the
original driver supporting the light pen was removed to de-
crease the size of the driver. The following code was re-
moved: the rbint routine which processed light pen inter-
rupts; the cursup function and global variables vg _x, vg y,
vg_hitaddr, and vg_incr which were used to update the cursor

after a light pen hit; and three special functions in the

rbsgtty routine (subsequently changed to vgsgtty) for enabling

"

TTWTT CpTeT , ke
PPN

-y
.

G ARG AR L o .17 o 4 e -5 BRI 5 Dol s rommess 220

light pen hits, disabling light pen hits, and loading vg_x

and vg_y.

Display System Differences

AFIT's VG display system has a data tablet input device,
but does not have a light pen device. The code added for the
data tablet was described in the last chapter, The data
tablet was assigned minor device number 1, which became avail-

able when the RBU minor device was removed from the system,

Differences Between UNIX Versions Six and Seven

Many differences exist between UNIX version six and
UNIX version seven. These differences are transparent to
users but not necessarily transparent to all device drivers.
Several changes were required to make the original VG driver
run under UNIX version seven. The differences between ver-
sion six and version seven affecting the VG device driver are
described here.

UNIX version six provided the following structure for
accessing the low byte and high byte of a 16 bit computer

word.
strucf{char lobyte; char hibyte;};

This structure was deflined in the version six source file

param.h, The version seven source file param.h does not con-

taln the structure. Since the VG device driver references
the structure often, it was added to the beginnlng of the

driver software (see line 93, Appendix D).

119

. g msanar T PO AR s~
AT < . - . . » o A5, Rl TV

0 §XT ETATTRA e 0 07 0
A . - St o om .

UNIX version six also provided the structure

struct {char d_minor; char d_major;};

for accessing the major and minor numbers of a device name,

This structure was declared in the version six source file
conf.h. Version seven does not support this data structure.
Instead it uses functions major(x) and minor(x) (declared in
the version seven file param.h) for fetching the major and
minor device numbers from the high order and low order bytes
of the device name. In order to reduce the number of changes
made to the original driver, the d_minor/d major structure |
was added to the beginning of the driver software (see line

96, Appendix D).

Another difference between UNIX versions six and seven
is the byte offset, u.u_offset. Thirty two bits are required
to keep track of the byte offset in a fille for I/0 purposes.
Since UNIX version six does not directly support "long" in-
tegers (i.e., 32 bit integer variables), it uses two sixteen
bit words to keep track of the byte offset in a file, These
two words are u.u_offset[0] and u.u_offset[1], UNIX version
seven does support long integers. Therefore, under version
seven, u.u_offset 1s one variable declared as type long. As
a result, all occurences of u.u_offset[O] and u.u_offset[1]
in the original driver were changed to u.u_offset for com-
patability with UNIX version seven (see lines 469 and 473,
Appendix D).

Two changes were made to the UNIX version six cdevsw

120

>
P
o

e e e na

TO¥e T

structure; (1) a new element, d stop, was added to the struc-

ture and (2) the d_sgtty element was changed to d_loctl,
These two changes affected the device driver software because
the driver's vgdev table 1s declared as a cdevsw structure
(see 1ine 538, Appendix D). Since the d_stop element is not
utilized by the driver a zero was placed in 1ts position as

a place holder in the vgdev table (see lines 539-542, Appen-
dix D). The driver's only reference to the d_sgtty element
of the vgdev table was changed to reference d_ioctl instead

(see 1ine 631, Appendix D).

Summary

Installation of a new version of UNIX which has an over-
lay capability is planned for AFIT's PDP11/60. This will
relieve the limited space problem somewhat. At that time
the level one graphics could be added back to the driver.

The abllity to support more systems software will allow for
future expanslon of the driver software to support other in-
put devices such as the light pen, joy stick, and control
dlals.

The differences betwen UNIX versions six and seven did
not cause any major changes to the original driver software.
Nevertheless, a lot of research was required in order to
hnderstand the differences that affected the driver software,

Once the driver source code was updated, 1t was compiled

and installed on the system.' The next chapter describes the

installation procedures 1n detail.

121

A . S e o aa

VIII Installing the VG Device Driver

The document entitled "Regenerating System Software"
provides a general guldeline for installing device drivers
under the UNIX version seven operating system (Ref 4:6-9).

The instructions In the document, together with a few modi-
ficatlons and additions, were used to install the VG device
driver on AFIT's PDP11/60 computer.

Before the VG device driver could be installed, the
system configuration had to be changeu to make room. The
existing system configuration at AFIT includes device drivers
for the RKO7 disk drives, the system console, and the time
sharing terminals. This is the minimum configuration needed
to support a multi-user, time shared environment. Unfortunately,
this minimum configuration approaches the maximum size allowed
for the UNIX operating system object file. The maximum
allowable size is specified as 49,152 bytes (see line 57,
Appendix E). 1In order to install the VG driver and remain
within the size 1limit, something had to be removed from the
current configuration. Since the RKO7 disk drives and the
system console are indespensable, the only thing that could be
removed was the dhll driver for the time sharing terminals.
This means that in order to use the VG graphics device, the
system must be degraded from multi-user to single user mode.
This undesirable situation will be remedied 1in the near future
with the installation of a new version of UNIX that provides

an "overlay" capabllity. This capability will allow a larger

122

UNIX obJect flle which, among other things, will support more
device drivers.
The VG device driver was installed under UNIX version

seven by performing the following eight steps.

Create the speclal files.

Relocate the driver source files.

Produce and archive the driver object file.
Edit the character device switch table.
Edit the interrupt vector file.

Produce the UNIX object file /unix.vg.
Restore the changed UNIX files.

Reboot the system from /unix.vg.

O~ OV =W

The remainder of this chapter 1is devoted to a detailed
description of these eight steps. Figure 24 includes all the
files and commands used during driver installation and identi-
fies their location 1n the root file system. Use of these
files and commands will be explained as the eight installation
steps are described. A description of what was done to remove
the dhll driver for the time sharing terminals will also be

gilven.

Creating the Special Files

Character oriented special files for the four VG minor
devices were created via the system command mknod(l). The

following system commands were executed to create the four

.special files.

cd /dev

/etc/mknod gpu
/etc/mknod dtb
/etc/mknod kbd
/etc/mknod fss

dev

LIB2 i

LIB2 i.save
LIB2 i.vg
vg.c

conf

c
c.c.save
c.c.
1.
1.s.good
1.s5.vg
makefile
mkdev_i

unix_i
unix_i.save
unix_i.vg
vg_conf.load
vg_conf.unload

Location of Relevent Files and Commands

The system expects all character orlented special files

to reside in the directory /dev. Therefore, the first command
executed changed the current directory to /dev. Next, on
lines 2-5, the four speclal files were created with the mknod
command, which resides in the /etc directory.

The mknod command accepts four input parameters. The
first parameter specifies the name of the special file to be
created. The second parameter indicates that the file is
character oriented as opposed to block oriented. The third
and fourth parameters specify the file's major and minor
device numbers respectively.

The mknod command uses the first input parameter to create
a directory entry in /dev for the special file. Next, the
mknod command creates an "inode" entry for the special file
and stores it in the disk inode table (Ref 10:18-2). The file
type (character in this case), major device number, and minor
device number represent the fille's characteristies. These
characteristics are stored in the file's disk inode entry for
lafer reference.

Appendix F contains a listing of directory /dev before
execution of the mknod commands, a listing of the mknod
commands, and a listing of /dev after execution of the mknod
‘commands. The latter listing verifies the creation of the
four special files.

The complete path names for the four special files are

/dev/gpu, /dev/dtb, /dev/kbd, and /dev/fss. These complete

pathnames are cited in user programs when referencing the VG

. H N 3
B am . e - Adme e e

graphics processing unit, data tablet, keyboard, and furction
switches respectively.

After creating the special files, their access modes
were updated with the chmod(1l) system command to allow all

user programs to read and/or write them (Ref 5:13-14). The

following 1list of commands were executed to accomplish this i
task.

1. # chmod +rw /dev/gpu

2. # chmod +r /dev/dtb

3. # chmod +r /dev/kbd

4, # chmod +r /dev/fss

5. #

The special file associated with the VG graphics pro-
cessing unit was given both read and write permissions, while
the special files assoclated with the VG input devices were

only glven read permission.

Relocating the Driver Source Files

As stated by Haley and Ritchie, "the source and object
programs for UNIX cre kept in four subdirectories of /sys"”
(Ref U:6). These four subdirectories are h, dev, conf, and
sys. A complete listing of the contents of these subdirec-
tories 1s given in Appendix G.

The subdirectory h ccntains header files which are picked
up (via '#include ...') as required by each system module
(Ref 4:7). These header files all end in '.h'. They contain
global declarations needed by system modules (Ref 10:1-3).

The VG device driver program obtalned from the University of

126

. 4 =
R

B o 2 47 o . - ¥ ks e Ay ez Rink 7 gl

Texas Included a header flle named initll.h. To maintain !

UNIX system standards, thls file was renamed vg.h and was
moved to subdirectory h. The resulting pathname for the file
was /sys/h/vg.h.

The dev subdirectory consists mostly of device driver
source files that all end in '.c'. The VG device driver
source file, vg.c, was moved to the dev subdirectory. The
resulting path name for the file was /sys/dev/vg.c.

Subdirectory conf 1is concerned with device configuration
and will be described later in detall. Subdirectory sys con-
tains the rest of the system and has nothing to do wlth device

driver installation.

Producing and Archiving the Driver Object File

The directory /sys/dev contains two libraries, LIB2 1
and LIBZ_3id, which contain all the device driver object files.
LIB2_1d is used with separate instruction and data (I and D)
space CPUs while LIB2 i 1s used with non-separate I and D
space CPUs, such as AFIT's PDP11/60. An object file for the
VG driver was produced and archived in LIB2 1.

Before altering LIB2 i, an original copy of it was placed

in LIB2_i.save. Thils guaranteed that LIB2_1 could always be

restored to 1ts origlinal state from LIB2_i.save.

In order to make room for the VG driver in the final
UNIX object flle, /unix.vg, the dhll driver object fille had
to be removed from LIB2 i. This was accomplished with the

archive system command, ar(l). The command line .

127

C e Sl e oaa

ar d LIB2 1 dh.o

deleted the dhll driver object file from library LIB2 1.
Next, a shell procedure (l1.e. an executable file con-
taining system commands) named mkdev_1 was invoked to compile
the VG driver source file and archive the resulting object
file in LIB2 1. The following listing of mkdev_i reveals the
commands executed by the UNIX shell program when mkdev_i is

invoked.

l. # cat /sys/conf/mkdev_i

2. echo c¢cp ../h/param_i.h ../h/param.h
3 cp ../h/param_1i.h ../h/param.h
4y, cd ../dev

5. touch Junk.o

6. rm *.0

7. cc =-c -0 $1l.c

8. cc -¢ -0 $2.c

9. cc -c -0 $3.c

10. cc -c -0 $b.c

11. cc -c -0 $5.c

12. cc -¢ -0 $6.c

13. ar rv LIB2 i *.o

14, rm ¥*.0

15. #

Line four changes the current directory to /sys/dev where
all the driver source files reslide. Lines seven through
thirteen allow mkdev_i to compile and archive up to six device
driver source modules at once (Ref U4:8). The '.c' extension
.required by the C compller is automatically appended to the
input files.

The following command stream was invoked to compile

and archive the VG device driver in lihrary LIB2_ 1.

128

it e e v

e B ——— B

cd /sys/conf

cp /sys/dev/vg.c /sys/dev/vg

mkdev 1 vg

ep ../h/param 1.h ../h/param.h

a - vg.o

rm /sys/dev/vg

cp /sys/dev/LIB2_1 /sys/dev/LIB2_1.vg
#

e ® o & e * e @

OO\ =W N

The first command changed the current directory to /sys/
conf where mkdev_i resides. On line two a copy of the VG
driver source file was made in /sys/dev/vg. This was done
because mkdev_1 expects no '.c' extension on its input para-
meters. Mkdev_1i was invoked on line three with file
/sys/dev/vg as the 1nput parameter. Line five 1s a message
indicating that the VG driver object file, vg.o, was success-
fully added to LIB2_1. On line seven a copy of the updated

LIB2_i was saved in LIB2_ 1.vg.

Editing the Character Device Switch Table

The system's character device switch table (cdevsw) is
contained in the file c.c which resides 1in the device con-
figuration directory /sys/conf. A complete listing of file
c.c is given in Appendix C.

Each row in the cdevsw table 1s reserved for a parti-
cular character type device driver. The ordinal position
of the row in the table implies the device's major device
number, starting from 0 (Ref 4:9).

A row in the cdevsw table gives all the information

the system needs to know about a particular device driver.

129

Y .
B dBE. 2 Al i IR TN 35 o i e B e

As stated by Haley and Ritchie,

"For character devices, each line in the
table specifies a routine for open, close,
read, and write, and one which sets and
returns device-specific status If
there 1s no open or close routine,
'nulldev' may be given; if there is no

‘ read, write, or status routine, 'nodev'
i may be given. Nodev sets an error flag
‘ and returns." (Ref 4:9)

The system expects the name for the open routine to be
in column one, the close routine in column two, the read
routine in column three, the write routine in column four,
and the status routine in column five.

Before altering the file /sys/conf/c.c, a copy of it
was made in the file /sys/conf/c.c.save. This was done so
that the original /sys/conf/c.c could always be restored to
its original content from /sys/conf/c.c.save.

' The names of the VG device handler routines (vgopen, %
vgelose, vgread, vgwrite, and vgloctl) were added as row 22
at the end of the existing cdevsw table (see line 77,
Appendix C). Thus, the number 22 became the major device
number for the VG graphics device. This explains why the

number 22 was specified as the major device number when

creating the special filles associated with the four VG minor

- devices.

B P Y

The code

int vgopen(), vgeclose(), vgread(), vgwrite(), vgioctl();

was added to fille /sys/conf/c.c tc declare the VG driver

= 130 ;

routines to be of type integer (see line 51, Appendix C).
Comments were added to the beginning of the flle to 1indicate
that the VG device handler had been added (see lines 1-11,
Appendix C).

The routines for the dhll driver were removed from the
cdevsw table. These entries were replaced with 'nodev' and
'nulldev' as needed (see line 59, Appendix C). Also, the

line declaring the type of the dhll driver routines was

e e it A Y i a3 i e

deleted. A copy of the updated file /sys/conf/c.c was saved

in /sys/conf/c.c.vg.

Wl v e

Editing the Interrupt Vector File

The file 1l.s, which resides in the /sys/conf directory,

contains the system's device interrupt vectors. A complete

listing of the file 1l.s 1s given in Appendix B. The interrupt
vector for the VG device was added to this file.

Before altering the file l.s, a copy of 1t was made in
the file /sys/conf/l.s.good. This guaranteed that 1l.s could
be restored to 1ts original state from l.s.good.

The interrupt vector for the VG device begins at loca-
tion 374 (octal). When the VG interrupts the PDP1ll CPU,
the program counter (PC) is loaded with the value stored at
Jlocation 374, while the processor status (PS) word 1s loaded
with the value stored at location 376. The assembly language

code

.= ZERO+374
vgint; br7

T RETRSES ST T TR YWY

was added to the file l.s to store the appropriate values at

locations 374 and 376 (see lines 60-61, Appendix B).
The assembly language code
.global _vgint
vglint: Jsr r0, call; jmp _vgint
was added to file 1l.s to provide the capability of calling the ;
VG device interrupt handler routine (lines 83-84, Appendix B).
The interrupt vectors for the dhll and dmll drivers
were removed from the file 1l.s. The dmll driver is used for
modem devices and is directly coupled to the dhll driver. i
After removing the dhll driver, the dmll interrupt vector was |
no longer needed. A copy of the updated file /sys/conf/l.s

was saved in /sys/conf/l.s.vg.

Producing the UNIX Object File /unix.vg

A new object flle for the UNIX operating system was
created with the make(l) system command. This command can be
used tb recomplle the entlire system from scratch or to re-
compile individual source modules and install them in the 1
correct libraries (Ref 4:7, and 5:11). The latter method
was used for installing the VG device driver software.

The form of the command used was "make unix60". The

‘input parameter unix60 indicates that only certaln source

modules were to be recompiled and that the CPU type was 60
(for the PDP11/60).
The make(l) command looks within the current directory

for a fille named "makefile". This file is used as 1nput

132

PN

o miob i 6 PR T AN - T M 1 o
h e

I p et

to the make(l) command. The file /sys/conf/makefile is the

19.

22. rm

24, #

input file needed for regenerating the system (Ref 5:11).
A complete listing of this file is given in Appendix E.
The following command stream was used to execute "make
unix60" and copy the resulting UNIX object file to /unix.vg.
1. # cd /sys/conf
2. # make unix60
3. convert 1.s 1 1i.s
b, ep 1l.s 1 1.s
. 5. done converting 1 i.s
. 6. as -0 1 1.0 1 i.s
. 7. as =-o mch_1.o mchO.s meh_1i.s
> 8. c¢p ../h/param_i.h ../h/param.h
-] 9. c¢c -¢c -0 c.cC
b 10. mv c.o c_1l.o0
] 11.
] 12. The output file will be named unix 1 I!!l!
13.
14, 1d -o unix_ 1 -x 1 _i.omeh_i.0 c_i.0 ../sys/LIB1_1
/dev/LIB2_1
15.
16. 1if size of unix i > 49152 bytes, UNIX IS TOO
BIG !!!!! -
17.

18. Size of unix_i is tEXT+DATA+BSS = TOTAL

20, Size unix 1
21. 33638+41918+13312 = 48868b = 013734UDb

¥.0

23. # cp unix_1 /unix.vg

First, the current directory was changed to /sys/conf

so that the appropriate "makefile" would be used. Next,

"make unix60" was invoked on line two. Lines 3-22 are

messages printed

during successful execution of the command.

The messages indicate what the command was doing.

Basically, the files /sys/conf/l.s, /sys/conf/mch0.s, and

/sys/conf/mch_1.s were assembled; the file /sys/conf/c.c was

compiled; then all the resulting object files were loaded

(along with /sys/sys/LIB1_i and /sys/dev/LIB2_1) into an

output object file name /sys/conf/unix i. Next, the size

- of the object file /sys/conf/unix_i was computed to see if

it exceeded 49,152 bytes (the maximum size allowed for a

UNIX object file). Finally, on line 22, all the files in

the directory /sys/conf that ended in '.o' were removed.

This was a cleanup step which removed all intermediate object
files created during execution of "make unix60".

On 1line 23 the UNIX objJect file /sys/conf/unix_1 was

copled to the root directory and given the name unix.vg.

Restoring the Changed UNIX Files

The original contents of UNIX files /sys/conf/l.s,
/sys/conf/c.c, and /sys/dev/LIB2_1 were changed in order to
i create the new UNIX object file, /unix.vg. A shell procedure,
or script file, named /sys/conf/vg conf.unload was created
to restore the original contents of these files after creating

the new UNIX object file, /unix.vg.

The script file was created by first using the editor

iy
Ve

to bulld a flle of system commands, then flagging the file

Y U

ietay

as an executable shell program with the chmod(l) system

TRV

[-

command (kef 2:5).
a3 A complete listing of /sys/conf/vg_conf.unload is given here.

cat /sys/conf/vg_conf.unload

1.
- 2. echo cp /sys/conf/c.c.save /sys/conf/c.c .
ff 3. c¢p /sys/conf/c.c.save /sys/conf/c.c
- 4, echo ;
! 5. echo cp /sys/conf/l.s.good /sys/conf/1l.s

L' 134

DR ondii A

6. cp /sys/conf/l.s.good /sys/conf/l.s

7. echo

8. echo cp /sys/conf/unix i.save /sys/conf/unix 1
9. c¢p /sys/conf/unix_i.save /sys/conf/unix_i

10. echo
11. echo cp /sys/dev/LIB2 i.save /sys/dev/LIB2 1
12. cp /sys/dev/LIB2_1i.save /sys/dev/LIB2_1i

13. echo

14. echo Finished unloading the configuration for
the VG3u404 !!!

15- #

This script is executed by typing its file name, /sys/conf/
vg_conf.unload, at the system prompt. 7Tt restores the original
contents of the UNIX files by copying from the appropriate

save files.

Rebooting the System from /unix.vg

To use the VG Graphics Display System, the PDP11/60

must be rebooted using the /unix.vg object file. A complete
1list of commands needed to reboot the system 1s given in
Appendix H. These commands must be executed from the system
console. When using this command stream it is assumed that
the system is in multl-user mode and that the system console
is logged in as the "root" executing a function that monitors
system usage. First, the system 1s taken down from multi-user

time sharing mode, then it is rebooted from /unix.vg.

Summary

This chapter presented a complete description of how to
install the VG device driver software on the PDP11/60 under UNIX
version seven. The device driver software testing methodology .
is described in the next chapter. All of the test programs and

results are 1included.

135

P N~ B

ig IX Software Testing

A few short C-language programs were written to test

some of the features of the system. This testing was by no

g e S T30t A

means comprehensive.

The testing methodology used was a combination of pro-

A=

gram path analysis and "black box" testing. The test pro- !

grams were written to exercise most of the major program

gt iy p RPN

paths of the device driver software. These paths were taken
directly from the structure chart in Figure 21 (see page 79
X Chapter VI). When the test programs were executed, data was
5 ;‘ input to the system for which a known output was expected.

. The actual output was checked against the desired output to

! % verlify that the driver software worked properly. With this
testing approach, the driver software was treated as a "black

box". In other words, the inner workings of the driver soft-

ware were not observed directly.

The major program paths were tested by writing test pro-

grams for each of the VG minor devices. The remainder of this
chapter 1s devoted to a description of the tests performed and

their results.

GPU Tests

The open(2), close(2), stty, and gtty system calls were

tested on the gpu minor device. The objective was to verify

that VG registers could be read and written by a user program

and that the GPU could fetch and execute a user display list .

i
136 l

from the host computer.

The first test performed was to open the GPU minor

device, write a value to a VG reglster, read the same register,
print the value read, then close the GPU minor device. The
code for the test routine and the execution of the test are

listed below.

1. # cat gputestl.c

2. main()

3. { int fdgpu, bufl3];

by, fdgpu = open("/dev/gpu",2);

5. buff[o] = 012;

6. buf[1] = 045;

7. stty(fdgpu,buf);

8. gtty(fdgpu,buf);

9. printf("%o\n", burf0]);

10. close(fdgpu);

11. }

12, #

13. #cc gputestl.c

14, #a.out

15. 45

16. # :
i

Lines 2 through 11 are a listing of the test routine. ‘

The routine was compiled on line 13 and executed on line 14.
The output was printed on line 15.

In this test the value 45 was written into the VG's ‘h
picture base object (PBO) register (see lines 5-7), then the

PBO register was read to verify that it contalned the value

45. The output on line 15 verified that the test was suc-

cessful. When the PBO register was written (line 7), buf[0]

A el - s

.contained the PBO register's address. When the PBO reglster
was read (line 8), buf[0] got changed to the value read.

The same test was performed on the VG's directory (DIR) %:
register. The value 45 was first written to the DIR register, |

then the DIR register was read. The result was 44 instead

137 f

| g W i et el

| i

A B

Daat

L e o e

of the éxpected 45, Later, it was discovered that this was

not a device driver software error. The VG's DIR register
contains loglc that converts all odd values to even values.

This 1s done because the directory address stored in the DIR
register must begin on a word boundary instead of a byte
boundary in computer memory. When even values are written tc
the DIR reglister the same values are returned when the register
i1s read.

The next test performed was to verify that the GPU could
fetch and execute a user display list stored in the host com-
puter. The display list used was taken f:»om the VG System
Reference Manual (Ref 18:4-3). This particular display 1list
contains the instructions needed to draw an equilateral tri-
angle (Ref 18:4-2). The code for the test routine and execu-

tion of the test are listed below.

1. # cat tri.c

2. main()

3. {int fdgpu, directry[10], object[50];
4., 1int stack[200], buf[3];
5. directry[0] = 01;

6. directry[1] = object;
7. object[0] = 01;

8. object[1] = 0140150;
9. object[2] = 0140000,
10. object[3] = 0140000,
11. object[:] = 0040000;
12. object[5] = 0140000;
13. object[6] = 0;

14. object[7] = 0040000;
15. object[8] = 0140000;
16. object[9] = 0140001;
17. object[10] = 0010000;
18. fdgpu = open ("/dev/gpu", 2);
19. buf[0] = 01;

20. buf[l] = stack;

21. stty(fdgpu,buf);

22. buf[0] = 02;

23. buf[l] = stack+63;
24, stty(fdgpu,buf);
25. bufr{0] = 0;
26. buf[1l] = directry;
27. stty(fdgpu,buf);
28. buf[0] = 012;
29. buf[1] = 01;
30. stty(fdgpu,buf);
31. buf[0] = 010;
32. bufl1] = o401;
33. stty(fdgpu,buf);
34, buffo] = 07;
35. buf[1] = 0160134;
36. stty(fdgpu,buf);
37. close(fdgpu);

' 38. 1}
39. # cc tri.c
4o. # a.out
31. GPU interrupt [12] - 130022 73257
2. #

Lines 2 through 38 are the code for the test routine.
Lines 5 and 6 set up the directory required for the display
list, while lines 7-17 set up the display list itself. Lines
19-21 store the beginning stack address in the VG's stack
base address (STB) register. Lines 22-24 store the ending
stack address in the VG's stack limit address (SLM) register.
Lines 25-27 store the directory address in the VG's directory

address (DIR) register. Lines 28-30 store the object number

of the base picture in the VG's picture base object (PBO)

register. Lines 31-33 load the VG@'s control (CTL) register,

while lines 34-36 load the VG's command (CMD) register.]

“Once the CMD register is loaded, the GPU 1is directed to fetch

ey

At - A A an

and execute the display list stored in the array named "object".
The test routine "tri.c" was compiled and executed on
lines 39-U41. The result was an interrupt generated by the GPU

with state code 12 (see line 41). State code 12 means that

139

>

\

3 "
T T T U ¥ SRy

an invalid‘picture base object or directory structure caused
the interrupt (Ref 18: Appendix B2). One probable cause of
this error 1s an invalid base address stored in the Hardware
Interface's Base Address Register (BAR). This would cause
all virtual addresses to be mapped to 1lncorrect physical
addresses. If this was the problem, then the GPU used an
erroneous physical address to fetch the user's directory in-
formation and found an invalid directory structure stored
there.

The way to dlscover if the Interface's BAR 1is being

loaded with the correct address is to write a user program

that performs the same address mapping that the Interface per-

forms (Ref 19:13). When performing the address mapping, use
the same base address that the driver software loads into the
Interface's BAR. The program should first store some pre-
determined value in a known location. Next the program maps
the known location's virtual address to a physical address
using the same base address and address mapping algorithm
used by the Hardware Interface. Finally, the program fetches
the contents of the calculated physical address to see if it
is the predetermined value that was stored there in the be-
ginning. If 1t 1is, then the error occuring in the driver
‘software was probably not caused by the Hardware Interface's
address mapping. On the other hand, if the value fetched 1is

not the same as the value stored then the base address used

during the address mapping was erroneous. If this is the case,

then the User Instruction Space Address (UISA) Registers have

140

!

ke

probably been changed between UNIX versilons slx and seven.

In that case, the driver software would have to be changed

to load the Interface's BAR from the correct UISA register.

Data Tablet Tests

N

The open(2), read(2), and close(2) system calls were

o s B s

tested on the data tablet mlinor device. The objective was

to verify that a user program could read the VG's data tablet
registers and that a user program could select which of the

? four types of data tablet interrupts 1t would recognize.

The first test performed was to open the data tablet
minor device, mask out all data tablet interrupts except those
generated by the pressure switch on the data tablet stylus,
read the data tablet minor device, then close it. The code

for the test routine and the execution of the test are listed

below.
1. # cat dtb.c
' 2. main()
! 3. |
! k. int fdgpu, fddtb, n, bufl50];
5. fdgpu = open("/dev/gpu",2);
. 6. fddtb = open("/dev/dtb",2);
}.} 7. bUf[OJ = -5;
z 8. bur[1] = 01;
i 9. stty(fdgpu,buf);
“i 10. n = 0;
: | 11. while (n<l) n=read(fddtb, &buf, 1);
o 12. printf("Flag = %0, X = %d, Y = %d\n", bur{l], bur[2]);
~ J . 13. close(fddtb);
- 14, close(fdgpu);
' 15. }
16. #

170 #

18. # cc dtb.c
= 19. # a.out
20. Flag =1, X = 3, Y = 41
21. # a.out

A e e nam e

141

= e

' 22. Flag = 1, X
23. # a.out
2k, Flag = 1, X
25. # a.out
26. Flag = 1, X
27. #

-377, Y = 441 - .
-408, Y = -319

369, Y = -318

Lines 5 and 6 open the GPU and data tablet minor devices.

i Lines 7 through 9 select the pressure switch interrupt (PRS)
only. Lines 11 and 12 read and print one X-Y coordinate pair
from the data tablet and the type of interrupt that generated
the pair. Lines 13 and 14 close the data tablet and gpu
minor devices.

Lines 19 through 26 contain the results of four different
executions of the test routine. For each test, the author
used the data tablet stylus to generate all the different
types of interrupts available on the data tablet, i.e., XO0S,
YOS, PNN, and PRS (Ref 17:2-83). The phrase "Flag = 1" on
each line of the output (lines 20, 22, 24, and 26) verifies
that only the X-Y coordinate palirs generated by the PRS in-
terrupt were passed to the test program.

For the next test, lines 7-9 of the data tablet test
program were omitted. This meant that X-Y coordinate pairs
generated by any of the four data tablet interrupts could be

read by the test program. Four different executions of this

i 4 ;
L PR

.test program and the resulting output are listed below.

{

cc dtb.c

1.

2. # a.out

3. Flag = 2, X=11, Y=75 ;
: 4. # a.out ;
: 5. Flag = 1, X=413, Y=U74 g

6. # a.out :

142

hJ m e S e —

7. Flag = 4, X=125, Y=512
8. # a.out

9. Flag = 8, X=512, Y=-305
10. #

In the first execution (lines 2-3), "Flag = 2" indicates
that the X-Y coordlnate palr was generated by a PNN interrupt.
For the second, third, and fourth executions, the X-Y coordi-
nate pairs were generated by the PRS, YOS, and XO0S interrupts
respectively.

For all of the above data tablet tests the device driver
software performed correctly. Therefore, the objective of the

data tablet tests was met.

Keyboard Tests

The open(2), read(2), and close(2) system calls were
tested on the VG's alphanumeric keyboard minor device. The
objective was to verify that a user program could read data
from the VG's alphanumerilc keyboard input device.

A short test program was written to read and print out
fourteen characters from the VG's alphanumeric keyboard. The
test program and three different executions of the test are

listed below.

cat kbd.c
main()
{ int 1, fdgpu, fdkbd, n, buf[50];
fdgpu = open("/dev/gpu",2);
fdkbd = open("/dev/kbd",2);
for (i=1; i<=14; 1++) {
n=o;
while (n<l) n=read(fdkbd,&buf,l);
printf("%c",buf(0]);

}

printf("\n");

HOWOO~NONN £&Wwh -

e

143

s PR - v - _ N h NI

v - AN R

"L

Tae M

’ e b N T -n
R SO S G

I .1 AREMIAA S s Sl pmibErc v

12. close (fdkbd);
13. close(fdgpu);
14, 1}

15. # cc kbd.c

16. # a.out

17. ¢this 1s a test
18. # a.out

19. This is a TEST
20. # a.out

21. 123456789{! 2 < >
22. #

Lines 2-14 are the test program while lines 16-21 are
three different executions of the test program. The first
and second executions (lines 16-19) verified that both upper
and lower case letters were read successfully. The third
execution (lines 20-21) verified that numeric and other special
characters were read successfully. Therefore, the objective -

of this test was met.

Function Switch Box Tests

The open(2), read(2), and close(2) system calls were
tested on the VG's function switch box minor device. The
objective was to verify that a user program could read values
from the VG's function switch box input device.

A test program was written to read one value from the
function switch box. The test program and four executions
of the test are listed below.

cat fss.c
main()

{
int fdgpu, fdfss, n, buf;

fdgpu = open("/dev/gpu",2);
fdfss = open("/dev/fss",2);
n = 0;

O~ AN EWN -

while (n<l) n=read(fdfss, &buf, 1);

S s o e

9
10

11.
12,
13.
14.
15-
16.
17.
18.
19.
20.
21.
22.

Line 2-12 are a listing of the test program.
contain four different executions of the test program.
each execution of the test program the author verified that the
value printed was the number of the function switch that was

depressed.

R s wriiore 1 - ok SIS AL Al e e ot L
” = ey

printf("function switch

close(fdfss);
close(fdgpu);
}

cc fss.c

a.out
function switch
a.out
function switch
a.out
function switch
a.out
function switch
#

[
]

15
25
31

box tests was met.

Summary
Most of the

Except for the direct memory access test performed on the GPU
minor device, all tests performed on the device driver soft-
ware were successful.

research.

Conclusions and recommendations are presented in

the next chapter.

%d\n", buf);

Lines 14-21

Therefore the cbjective of the function switch

major features of the system were tested.

This testing concluded the author's

o

E o

X Conclusions and Recommendations

The UNIX operating system provides a stralght-forward
interface to peripheral device driver software. This inter-
face allows for the addition of any number of perlpheral
devices to the system. The limlting factor 1s the amount of
memory avallable for the operating system. This was a major
problem with AFIT's PDP 11/60. Space was so limited that the
VG graphics display system could only be used while the PDP
11/60 was in single user mode. This unacceptable situation
can be remedied with the newer version of UNIX which has a
memory overlay capability. This capability will allow the
operating system to support more device drivers.

The differences between UNIX versions six and seven were
transparent to the common user but not to the systems pro-
grammer. Therefore, a computer installation that upgrades to
a later version of UNIX may have to convert some of their
device'driver software. Many changes had to be made to
McCallum's original driver before it would run under UNIX
version seven.

The fact that UNIX 1s written in a High Order Language
(HOL) such as "C" 1is a real asset. This ailds the systems
‘programmer lmmensely in understanding and maintaining the
system. It is also very convenlent to be able to write the
device driver software in the same HOL. The C programming
language has many features which lend to systems programming,

e.g., polnters and structures.

146

‘show how the time-out would have worked using the three

. - i SRR R R et
Mm e e e e

McCallum's design for the VG device driver was stralght-
forward and easy to understand. He used a top down modular

approach which allows for easy expansion of the driver soft-

e

ware, This was shown by the easy addition of the data tablet

minor device to the driver software.

The apparent problem with direct memory access must be
solved before the system 1is useful. First, the cause of the
problem must be 1dentified, then corrected. A probable
cause of the problem and a possible solution were identified
in Chapter IX.

Many worthwhlile projects could stem from the research in
this thesis. One project would be to implement a time-out

capabillity when reading from the VG input devices. In other

words, if no input data is avallable when a user program reads

a VG input device then the user program should be put to
"sleep" for a short time to wait for data to be input from
the device.

The author attempted to implement the time-out feature
using the alarm(2), pause(2), and signal(2) system calls.
The attempt was aborted when it was discovered that the header
file required by the signal(2) system call (signal.h) was not

avallable on AFIT's system. The following three 1lines of code

system calls.

1. alarm(n);
2. pause();
3. (*signal(SIGALRM,SIG_IGN))();

147

=

e el S i - 2 L

The author intended to have the device driver execute this

code if no data was avallable when a user program attempted
to read a VG input device. Line 1 tells UNIX to send an
alarm signal to thils process after n seconds have elapsed.
Line 2 causes the driver to stop execution to wait for a
signal. Line 3 catches the alarm slgnal sent by UNIX after
the n seconds have elapsed. After the alarm signal is

caught the device driver resumes execution. This would have
been an easy way to implement the time-out feature. Since
the flle /sys/h/signal.h was not present on the system, the
time-out feature could not be done with the alarm(2), pause(2),
and signal(Z) system calls. Nevertheless, a time-out feature
could be programmed in other ways.

Another possible project would be to enhance the input
capabilities of the VG's alphanumeric keyboard input device.
Currently the device driver only supports the "raw" mode of
input from the keyboard. That is, no special meaning is
assigﬁed to any input character received from the VG's key-
board. The device driver could be changed to support "rooked"
input from the VG keyboard. That is, control characters input
from the VG's keyboard could be detected by the device driver

and handled in a speclal way. Another project in thils area

“would be to echo the keyboard characters to the VG's display.

Perhaps the most worthwhile project 1s the implementa-
tion of a high level device independent graphics software
package on the system. McCallum's level two graphics soft-~

ware (Ref 12) is readily available. It may have to be modi-

148

o AL s+«

R R R R PR VI ORIV L s e e R el
g

grexy

fied a little to be compatible with UNIX version seven's
version of device driver software.

Another graphics software system such as Lawrence
Livermore's Grafcore/Graflib (Ref 6) could also be imple-
mented. In this case a BASELIB would have to be generated
to define the UNIX/Graflib interface. Next a filter would
have to be written to convert the device independent display
list that Graflib produces into a display list that can be
processed by the VG display system.

Many more worthwhile thesis projects could be undertaken
to develop AFIT's computer graphics capabilities. The field

1s wide open and the options are virtually limitless.

P e

s st s e AW Riads e

:

A

10.

11.

12.

Bibliography

Bell Telephone Laboratories, UNIX Time-Sharing System:
UNIX Programmer's Manual, 1, Murray Hill: Bell Tele-
phone Laboratories, Inc,, January 1979.

Bourne, S. R. "An Introduction to the UNIX Shell,"
UNIX Programmer's Manual, 2A. Murray Hill: Bell Tele-
phone Laboratories, Inc., January 1979.

Bourne, S. R. "The UNIX Shell," The Bell System Techni-
cal Journal, 57 (6): 1971-1990 (July-August 1978),

Haley, Charles B. and Dennis M. Ritchie. "Regenerating
System Software," UNIX Programmer's Manual, 2A,

Murray Hill: Bell Telephone Laboratories, Inc.,
January 1979.

Haley, Charles B. and Dennis M. Ritchie. "Setting Up
UNIX - Seventh Edition," UNIX Programmer's Manual, 2A.
Murray Hill: Bell Telephone Laboratories, Inc.,
January 1979.

Keller, Pete, et al. GRAFLIB Reference Manual. Liver-
more: Lawrence Livermore Laboratory, October 1980.

Kernighan, Brian W. and Dennis M. Ritchie. The C Pro-
gramming Language. Englewood Cliffs: Prentice-Hall,
Inc., 1978.

Kernighan, Brian W. "A Tutorial Introduction to the UNIX
Text Editor," UNIX Programmer's Manual, 2A: 54-64.
Murray H1ll: Bell Telephone Laboratories, Inc.,

January 1979.

Kernighan, Brian W. "UNIX for Beginners - Seventh
Edition," UNIX Programmer's Manual, 2A: Murray Hill:
Bell Telephone Laboratories, Inc., January 1979.

Lions, J. A Commentary on the UNIX Operating System.
Kensington: ~Department of Computer Science, The Uni-
verslty of New South Wales, June 1977.

Lions, J. UNIX Operating System Source Code, Level Six,
Kensington: Department of Computer Science, The Univer-
sity of New South Wales, June 1977.

McCallum, Douglas Roland. A Machine-Independent Inter-
active Computer Graphics System. MA thesis, Austin,
Texas: The University of Texas at Austin, May 1980.

150

13.

14,

15.

16.

17.

18.

19.

20.

Ritchle, D. M, and K, Thompson., "The UNIX Time~Sharing
System," UNIX Programmer's Manual, 2A: 23~38, Murray
Hill: Bell Telephone Laboratories, Inc.,, January 1979. j

Ritchie, Dennis M. "The UNIX I/O System," UNIX Program-
mer's Manual, 2A. Murry Hill: Bell Telephone Labora-
torles, Inc., January 1979.

SIGGRAPH. "Status Report of the Graphic Standards
Planning Committee," Computer Graphics, A Quarterl
Report of SIGGRAPH-ACM, 13 (3). (August 1379),

Manual, 2A. Murray Hill: Bell Telephone Laboratories,
Inc., January 1979.

Thompson, K. "UNIX Implementation,"™ UNIX Programmer's 1
|

Vector General. Graphics Display System Model 3404 i
Programming Concepts Manual. Publication number 113489, i
Woodland Hills: Vector General Inc., July 1978. .

Vector General. Graphics Display System Model 3404 .
System Reference Manual. Publication number M110700REF. '
Woodland Hills: Vector General Inc., August 1978.

Vector General. PDPll Interface Specifications. DE41
reference manual. Woodland Hills: Vector General Inc.

Vector General. Series 3400 Technical Manual, Volume 1.
Publication number M110700. Woodland Hills: Vector
General Inc., March 1978.

Dadiiiis e L il ian

[

g

) .

Appendix A:

Listings of UNIX Source Files
/sys/h/proc.h and /sys/h/user.h

The two UNIX Source Files contained in this appendix

were printed on the PDP11/60 system. The following two com-

mand lines were invoked to print the files on a teletype

terminal.

1. # printit </sys/h/proc.h
2. # printit </sys/h/user.h

The program "printit" was written to print the input file

with line numbers added.

listed below.

The source code for this program is

printit <printit.c
#include "/sys/h/stdio.h"
#define MAXLINE 133

0l
02
03
04
05
06
07

08
09
010
011

main()
{

reglster int 1;
char *temp[133];

for (i=1;fgets(temp,MAXLINE,stdin);
i++) {
fprintf(stdout,"%5.5d "i);
fputs(temp,stdout);

The prinit program was used to print all of the source

file listings in Appendices A-E.

152

3513

/x (23e1S pouopueqe) ,/ r4 LlIVMS BUT3opy £Lo
. /x 3udAd ue Jujiyese 4/ 1 dd4d1SS 2uTjapy z€o
i} /x S2p0d 3IBIS 4/ 1€0
. oto
/¥ 319317 @¥a1qed doad ayl 4/ ¢{]}o0ad o20ad 3on13Is uvia3lIxd 620

8¢0
_ X\ LZ0
, /% TRUZTIS YD01D wieTe 03 2w y/ ‘wyIyyd d Juf 920
/+ S83ssadoad Suyuuni jJo 3ISTT PONUTT «/ ‘Qufr dy d20ad 3Idna3s $Z0
/x 210320138 3x231 03 aa3jujyod ,/ tdixa3 d, 3Ix931 3°ni13s *Z0
/¥ 3uTiTEME ST SS9D01d JUIAD 4/ ‘ueyom d 3 apped €20

/x (S8Y2T112) 2Feuy ayqeddems jo 2azfS x/ t9zys d laoys z20

/x ?3ewy o1qeddems jo ssaappe y/ tappe d Jaoys 120

: /¥ 3ud3ed Jo pT ssod01d 4/ tprdd d Jaoys 0C0
3 /% PT ssad0ad anbyun y/ :p1d d Jaoys 610
; /¥ 32pe2T dnoad ssadoxd jo sueu y/ tdagd ™ d 3ao0ys 810
/x 8Teu8fs £33 3231Fp 03 pasn ‘py aasn x/ tpin d jaoys L10

- /% $S?@%01d sTy3l o3 Juipudad sTRUBTS g/ "unHn Jaoys 910 mU
.. /+ @238esn nd> 103 231u g/ ‘907U d 1ey? S$10 —~

m /x SUTInpoayds 103 98esn ndd 4/ usauHa aeyo %10
/» 8UFINpPayss 103 33Uy JUIPFSIA yx/ towyy d aeyd €10
- /% Y3Ty sT @2AF3IeFou ‘A3yaorad 4/ tyad d aeyo Z10
M tge13 d aeyd 110
t1e3s d ieyd 010

} 20ad 3ona3s 60

/+ 80

*ssad0xd a3yl yitm paddems sy L0

(yraesn) eiep ssadoad aad 13yiQ 4 90

*3no poaddems aq Aew ssadoad <0

24yl 27TYym ssadoad ayiy 3noqe %0

papodu ejep T[® Sufeluod 3] °Ssadoad €0

aAaTiIde 13d pajEDO[TE 2aANIONIIS duQ 20

x/ 10

1 9@8eyq y*20ad/y/sdg/ a{F4d 92anog jo Suyisy 1861 €S:91 8 929d

PN O oo ‘.\ oo L et} i LR y . ey -5 v

/% 3ITEA 103 SNIBIS ITXT y/ t3e3sx dx
H J10y4s
/+ 3udied jo py ssadoad / tprdd dx uuo“m oy
/% PT ssad01d anbyun ./ tprd dx ja0ys b0
/v 1°ped7 dnoad ssadoad jo sweu ./ :dadd dx Jao0ys lo
/% STEUZTS £33 3231Ip 03 pasn ‘pr aasn ./ .pIn dx Jaoys MNW
/¥ 882%0ad syl o3 Bujypusd syruUBIS ./ t91s dx jaoys 190
/x 29esn ndd> 103 2dTu 4/ f9oTu dx aeyo 090
/¥ BupTnpayds 103 afesn ndo / tnda dx ieyo
/x wsﬁwsvo:um 10J 2wWY3 JUIPTSIX x/ towyy dx aeyd wa
/% 43Ty s7 @ayiedou ‘Litaorad "ﬂuaﬂnx ieyd LSO
mwmawlax aey»o 960
‘338 dx aey? $S0
} 20adx 3Idnais %60
231elSs [£eo
: JIGNOZ Ut « A
ssd001d juaaed o3 poassed s8q 031 160
SawWwT3 Y3rm 3aed adeydax 03 0s0
2an3ona3s 20ad yayieaed 6%0 mw
x/ 840 ~

2102 u d0 . re
/* y me w:mﬁnmuuum 128N y/ 0010 AD2071NS PUrjapy 9%0

" 13 FoBA3 13Yyjoue / 0%0 ; duyje
/% p3de131 3ulaq ST ssadoad 020 cwwww w:ﬂmmcﬁ shY
/+ Ino paddems Sujaq sy ssadoad ,,; ; 3o £
/» paddems aq 3jouued ssadoad *\ oww oons autsomy o
¥ AD01S 2uUrjiepy ¢y0

s d
/x SS?d01 wcﬁwmmwswm *“ r4y SASS durjapy 170
» » 10 Uvols @uy¥japy ovo
/% S2pod dey3 4/ 6L0
paocex3y 3uyaq ssadoad ; veo
/» UOTIBUTWII] mmuuoum«cﬁ ?3eB1S owmﬂvosumu“a H“ M meww w:wuwvg L0
/s UOTIED1D Ssadoad uy e ’ arran ceo
T s ouWavMM“”“”w */ Y TUIS duypiapy $t0
» x/ t NOYS @2upjapy €0
Z 98eyq : *d0ad
yroo0ad/y/sds/ a4 @d2anos jo 3urisyi mcmﬁ £Siy1T 8 92

b £

.

b s LTS (e R

w

et Pois

_ - - {690
/v 203d STyl ‘2wl walisds / towyls _dx 3 _auyl 890
/% 20xd SI{3 ‘auwrl aasn 4/ fowyin dx 3 ouwy3 190
£ 98egq y+o20ad/y/sks/ @714 @22anos jo SuyIsyq 1861 €C€:91 8 9293a

155

U BT A T taduit

o

/% I1sTT183e 031 1d3ugod

/s« 2aN30n138s doad 03 13jujod
/% PT dnoad teoax

/« PT X9sn jeaa

/% PT dnoad aaAf3dajzjze

/%« PT a3sn 92A73109339

/% ®PO2 1011d uaniaa

/e 1 398n:z ‘wa3isks:y1 :q iasn:g :9e73 OI
/% S321s7331 g4

/% 13181891 snieas JJ

/x 202d STyl 103 poaaes s8aa J4

/» 19387821 10239 44

/» 83%2e3s Bur3ueyoxs uaym ojuy aIaes

1 @?3e4q

ycaasn/y/sks/ ¥3[F4 92anos jo Juyrisyq

x/ _tde ny uy
x/ tdooad ny d20ad 3ona3s
x/ ‘PI%a n jaoys
%/ tpPFNA_n Jaoys
x/ ‘PI3 n 3aoys
%/ “vwsHs Jaoys
x/ {10139 n aey?d
x/ t3134%9s n aeyos
_ tsdy n

x/ {[9])s3aad3y n oa1qnop

v/ tasdjy n Juy
_ '} 3ona3s
»/ :paaesd3y n Juy
%/ faady n 3ug
x/ fAesa n 3 [oqefl

aasn uusuuw

10 2S071DXd 2ufr3apyg

/

*ssadoad aues

243 103 2an3onils do0ad ayay yigm
pooua1933Jaa sso0xd ST aasn aad xoe3s
walsds a4yl suyeIVOD {QQQQOYT 207
I2Ul19) TeNIITA B SIPFSald :8uog
§934q #9x3ZISN ST A901q aasn ayl
‘paddens sy ssadsoad ay3l ayfyysm
padua213Jaa1 9q 03 padu 3J_usaop eyl
ejep ssad0ad 1a2d [Te sujejuo)
*ssadoad aad peajedso0lTe BugQ
*22Nn309n13s8 a3Isn ayy

TN vy ey

o ey

€ X £ & ¥ K X kK K X K kK &

1861 9%:%91 8

£eo
tto
1€0
0¢0
620
8¢0
Lo
920
$C¢o
9¢0
£CO
[XAY
120
0¢0
610
810
L10
910
S10
710
€10
(ALY
110
010
60

80

Lo

90

S0

%0

t£0

0

10

9

156

24a

M
t
¢

R N L s cainiilihied

/% 0¥ p3aaes siasn jo ssaappe

/% S@WIIS _SPITYO Jjo uns

/¥ S9WIINn _SPTTYD Jo uns

/¥ PWTY wd3sds ssad>oad syy3

/¥ PWIl 1asn ssadoad syl

/% STeu8Is jo uojr3ijsodsyp

/» 8uyddems 103 aTqeTaEA TO9qET]

/v s3dnixajuy pue s3ynb 103 arqeyaea yoqey
/% (SADTIO) @2z1s 3yoels

/¥ (SYDOITD) 92FSs eiep

/¥ (S3)2FT°) @215 13Ix31

/» T1e wa21sf s 3ju3iand 03 sjuaduwnize

/+ S@T¥3 usado jo s3e13y ssodoad-aad

/+ 821713 uado jo saan3idoniis a1F3J 03 saajuyod
/x S103d7a2sap uojyiejuawdas jo adLjojoad
/+ S3Sssdappe uogriejuawias jJo adLiojoad
/x 43Tp 3o Kio3loa2ayp judzed jo spoutg

/x L£33ud KL10302a1p Jud3iand

/% i®3urod auweuyied

/¥ 3Iuduodwod suweuyied Juaxand

/¥ 8s3d0ad jua1and jo £L10392aFp 3001

/+ £303222Fp 3juaaiand jo apoufl o3 a93jugod
/+ O1 3103 STT3 ujy 318s3jo

/¥ 01 103 3ujutewaa sajzdq

. /¥ 01 103 ssaippe aseq

/s S®NTEA UINIDI TTEOSLS

Z 98eyg

x/
¥/
%/
x/
¥/
x/
»/
¥/
x/
¥/
%/
x/
x/
*/
%/
x/
x/
x/
x/
¥/
¥/
/
*/
¥/
¥/

x/

y-aasn/y/sks/ 9174 @adanog jo Sujiasyq

Mo o
tpae ny Juy
tdwyIisd n 3 owyl
tawy3ind n 3 2wyl
WIS N 3 QW3
iauyIn n 3 duwll
{[91sN]TeUSTS N uy

‘aess n 3 Taqey

taesb n 3 Taqet

$t22788 N pauYysun
t9zTsp n paudysun
192F53 n paugisun

{[¢]8ae n Jug
‘[a11doK]a1T30d 0 aey>

*[a1140N]a1T30 ny a1T3 3dna3s

‘fgtrlpsyn_n uy
‘lg1lesyn n jufg
taypd ny apouf 3I92ni3s
tJuap n 302aFp 3OniIIS
tdagp n 3 appeod
flzIsy¥lglingp n 1ey>d
1Tpa Ny IpoOuf 3onays
$1Fpd Ny 8pouf 312n13s
1398330 n 3 330
!3unod n juf paudisun
taseq n 3 apped

_ _ s n
‘Wl I 1 duil
£330 1 31 330
AT Jugy m
‘11eA 2 Jufg
} 3omaas
} uotun

1861 99:%1 8

990
<90
%90
£90
¢90
190
090
6$0
850
LSO
960
$s0
760
€S0
¢S50
160
0S0
6%0
8%0
L9796
9%0
S%0
%%0
€90
%0
1%0
0vo0
6L 0
8€0
LEO
9¢0
SEO
€0

23Q

157

.0 238N JONIIS UIIIXD 660
860
. " tLeo
§ ¥
§ 219y yseax o3 3jou vumsxuwn* me
M $9x32ISN + N WOlXJ SpPuaIIXI 760
i 138n a12d oels TAUIIY x4/ _ €60
¥ :{1]3oe3s_n Juy 260
m /% UOTIEIID B[TJ 103 AYseuw / hxmmsuHs 3a0ys ~Mc
2] /% 29387 2q TTI¥A ‘mou pasnun o/ t8e13dy n Jaoys 060
M :geryoe n _aeyd 680
: tjaeas n 3 QJuI 880
t[ZzIS¥Id]uwwod n aeyd (80
. _ ;ejepxa n { 980
4 ‘813191 _xn poauldrsun <80
‘pasnun_xn paudysun %80
/¥ UOTIEDOT A13juU3d 4/ {d0T3ua_xn paudysun £80
/% @238 21qel ToquAs ./ :92zyss_xn paudysun 80 mﬂ
[x 278 ssq x/ f9z1sq xn paudfsun 180 o~

/¥ 92FS ®lEp 4/ t9zysp_xn paudysun . 0%0 ’
/¥ P2T8 31x93 / {92753 Xn paudrsun 610
/¥ 32qunu dy8euw x/ t3ew xn ur 8,0
/% @TT3 @7qeINdaxa jo iapeay x/ _ '} 3"nass LLD
- Jx AP £33 QUITTO0IIUCD 4/ .p£L33 n 3 Adp 920
/» 323uyod £33 BufrYOI3uUO0D 4/ td£33 ny £33 39ona3s SL0
/» uolleaedas q pue 1 103 Sery y/ :des n aeyd 9.0
/+ 84&8 WOXJ I3UF Ydied 4/ t3133ug n ey’ €20
_ i3oad n { ZL0
/% durreds od 4/ ta1eds_ad paulysun 120
/+ 3988330 2d / t330_ad paulysun 0.0
/» ®@2ZF8 I3330nq y/ {9z1s a1d pau8isun 690
/% 3S®q 19333INnq y/ taseq ad, jaoys 890
/+ sludun8ae arrjoad 4/ . } 3snaas 190

€ 93eyq yeaasn/y/sds/ o774 @223no0g jo Jujyasyq 1861 9%:9y1 g 93¢

e RO e e e e D . TR s s s e

Maaaaty

QLR

et

L

%
Y
1€ ANIIKT Pujijapy ¢e10
115 SJ0Yd dur3Iapy 1¢10]
6 ddIdSHd Puljapy 0t10 .
8¢ OdSONd @uy3apy 6C10
Le OIddd duT3apy 8¢10
97 ASHLIXLY 9ujijepy L¢10 i
6T ALLON3 dutr3jopyg 9210
%7 d11dRY durIapy sZ10
€¢ d1IJdNY duygjiapy yC10
¢C IVANIZ dupjapy €210
1¢ ¥14dSId 2ur3epy (XA
0C YIULONY Sufpjapy 1710
61 AUQUNY 2utrjopy ocio
81 A3QXd3 L2ur3epy 6110
L1 LSIX43 2urjiapy g110
91 ASNGd 2ur3apy L110
ST ATHLONI duypiapy 9110
1 110V43 dufjiapy S110 a
€1 $300Vva Bdurjapy 7110 ~
¢1 KHYWHONY @upjapy £e11Q
11 NIVOVI 2utrjapy ¢11Q }
01 (J71IHDOY ®ujpiapy 1110 ;
6 davedd 2urjapy 0110 m
8 JDUXHONZ Durjiapy 6010]
L J14d7d @UTrjapy 8010 {
9 OIXN3d dutjapy L0110 R
S OId Pugpjapy 9010 &
Vi ULNIYJ dutrjapyg SOo10 _
€ HOYST Putjapy 7010
¢ LNJIONZI 2ujjopy €010
1 Riiddd augjapy Zo1to
/% 8@pODd 10133 n 4/ 1010
0010
4y ¥a8wq ycxasn/y/eLs/ ayyd 9danog 3o Sutisin X1

1861 9%:v1 ©

4
{
3

%¢ dONVYI 2uUTjopy SE10
€€ WOQ3 3ut3apy 7€10
rAY dd1dd duyyapy €10

160

¢ 9%eg ycxesn/y/efs/ aTyd @adanos jo 3uyrisyq 1861 9%:91 8 92q
%
¥
£ f

R

Appendix B: Listing of UNIX Source File
/8ys/conf/1l.8.vg

The UNIX source file /sys/conf/l.s.vg contains the

system call trap vector (line 31) and the VG's interrupt

vector (lines 60-61 and 83-84). -

7 AL PR

(.dex3_, £q preraaao) walsks
dex3 aojefnua

1183 I9mod

deay 107

dex3 adoexil-1dq

UOT3IOdNajsuy [edaryT

*94+71qi3aels
*G4+.xq .deag
*4y411q ‘deajy
*g€+,aq ‘deay
*Z+13q ‘deay
*1+4aq :deaj

Oy+0d3Z = -~

10119 snq *0+/31q ‘deaj
s103daa dexy /
Y
31 aq
0+0¥3Z = °
ove = (29
00¢ = 919
o%Z = G149
00¢C = %14
1 0Yu3e
e3ep’
2102 moy /
/
/
*?TTIS STYI WOaJ panowdx ua’aq 3aABY SI0322A 3dniasjug /
T1HAQ Pue T1HA 243 ‘A9ATIP DA OYl 103 wWOOI INPW O3 /
T 7911 @WO3J paAowaax sem IDJAFIP [IYp ¥yl aours /
/
*wa3sds Aerdsyqg sorydexs yovg [EI3U3H 103937 /
34yl 203 10329Aa 3dnaaajuy ay3l IpnIOuUl 03 PpIITpa /
: /
8a-s8*T/3u0d/8L8/ @2TT4d 9danog 3Jo Sujasyq 1861 vZ:v1 8

€0
AR
1€0
oto
620
8C0
L20
9to0
sZo
%¢0
€20
[XAY)
120
020
610
810
L10
910
sio
210
€10
Z10
110
010
60

80

LO

90

S0

%0

to

to

10

29y

162

QIVRPIR

sttt L

ot R g e

PITTIIEIITT0T 000000000000 000000000000010100110100711111111
D 03 9pOD 2dovFJaDJUT /
\\
J03992A 1dniId9JUF TBISUIH I03IDIA / LIq4 f3ujgla
9LE+04HZ = °
810309A 3uyleoyy /
uoj3le[oTAa uojiejuduias / *6+.1q :dea3
juyod 3Juyaeory / *g+,3q ideay
3dnaaajuy psuwweaoad *[+(31q ‘deay
. 0%T+0¥32 = *
G115 0Ty
OT1T+0Y4Z = °
A3vaed gz/11 / *01+,3q :dea3
911404832 = °
gaq :dimy
g1q :dimy
00140432 = *
$1q ({noyy
9dQ UTTy
09+0d3Z = °
dunp duf
lae3s duf : 1
dunp ‘331838 T[qo18°
¢ 93e4q 3a°8°T/3u0d/848/ dTFd 3dano§ joO wcﬁunﬂa 1861 vZ:v1l 8

990
€90
290
€90
<90
190
090
650

<o
LS9
960
G0
%S0
€S0
¢co
150
0s0
070
8%0
L90
9%0
$%0
7%0
€90
Z%0
190
0vo0
6€£0
8¢0
Leo
9¢0
Sto
%¢0

163

3aQ

e —— e - —

Juysa ‘11e?2‘p2 asf %80
Jut8a €80

Z80

- 180
13uTyy ‘11e2¢02 asf(080
I3UPY 6L0

8L0

- LLo

A207O ‘T1e2¢Qa asf 970
320712 SLo0

- 9L0
JUEXTY ‘1te2¢ga asf €L0
JUFXTY Lo

IUTATY ‘11E2‘02 asf 140
JuTaTy 0L0

690

deay ‘yyred 890

L90

8a+8°1/3u0d/848/ @7F4 9danos 3Jo Jujlasyt 1861 %2:91 g 93¢

R

PR R | .
— - -

SR A Ry
P -~ %

I D
R P

o it i 6 i A TSR
_ N [Tomm—

Appendix C: Listing of UNIX Source File
/sys/conf/c.c.vg
The UNIX source flle /sys/conf/c.c.vg contains the
system character device switch table (cdevsw)., The cdevsw

table contains the addresses of the VG major device routines

(1ine 77). -

165

b o e

/¥ 0 = 43 ¢/ ‘0 ‘aspou ‘aapou ‘aA3pou w €€0

L0

= [Jmsaspq msaspq 3I9nagzs 1€0

fqeINY jng 3Ionajys 0€0

:()L3a3exasyy Jug 620

t()as3pou Jug 820

-()aeprInu Juy LCO

970

WUtidoe/jy/ee apnidury (AN

wUSPPOUT/y/e* BpnIdUfy VA

SU'2TFI/ Y/, @pnIougy £C0

WUTI3Sn/ysee apnydury YA

WUTATP/Y e, PpRiduULy 120

JUTIXDISY /o m Bpnidugy 0¢0O

JUtooad/yyse- apnydury 610

LUt Juod/y/ec epnidoury 810

LU L3374/, epnydugy L10

L4°3nq Y/, @pnIduyy g1g v
LUtwisks/y/ /e, @pnIdul; g1 -

::.Emumn\:\..: apnyIdugy %10

€10

“«a««*««««««***g**«*««*«***«*«*««*¢**«**««««*******«g**«*****¢«\ MMW
* . , *pe23jaoddns jou Sy 9pow I3SN-FI[NY / 01

¥ pou 13sn 9TJYuFS UF ATTYM 92FA2Q SOTYdeas [easuay 10323, *\ 0
/% 3y3 9sn L[uo ued nof 3IBY3 SuUEBDW SIYJL *wWoo0x d)eW *\ 60
“« ”“ Mw>osmu SEM % = UYp IIATIP ODFAIP 3yl 0S ‘waisds ay3 ”\ WM

¥ J 3o0u NOM JI3AT2
/¥ PT ATIP 3DFAIP HOYE TEIDUDH 103ID37 YL x/ 9@
/» " v
/x 77 @°1A3p aoflew sv 3a7qed msa? " 0
. Po @4yl 03 pappe uaaq se
“« 82TA8Q sOoTydean yoyg [EIADUIH 20323, dY3l apnydufg om vmeww «“ Mw
REXNENER .

R Ay T I I Iy, 10

28e R X
1 d 8A*2°d>/3Ju0d/sfs/) aTT4d @2anos jo Sujisyq 1861 9€:%1 g8 92q

T T - e e —

a .- (PR ORI O S W Ll ek s ————

PR A 3

/¥ 11 = da 7 ‘g ‘as ‘
MRS . .>wvHH:: .>mvo: ”>wco= ‘aAapou ‘aAdpou ‘aapou
o yi x/ ‘0 . PTIINU ‘a3pou ‘aAdpou ‘avpou ‘aapou ‘aspo oy
= € 4 L3 "
/e § - wou & o .vaﬁw==>wmwwwm aAdpou ‘aapou ‘aAapou ‘aspou .>wwoc WNO
‘33 Famwu ‘pesaww ¢ ¢ 0
e S,) APTINU ‘ADpPTINU
PITNuU ‘aspo ¢ ¢
/¥ 9 =[P x/ ‘0 ‘Adpyinu .>wwo” ,MMWM” .choc Chabou choben Mww
M A S . pou ‘aapou ‘aspou
“v.ﬂﬁsc. A € [3 [4 v
/¥ % = UP x/ ‘0 ‘A@pIInU .>MMM” .MMMM” .vaon .>ovoc b WNW
A A S pou ‘aapou ‘aapou
PIINu ‘aapou ‘aapou ° ¢ 650
MR WIS p Adpou ‘Adpou ‘aAapou
PITInu *‘a? ¢ ¢ '
AR B LA Bl L pou ,>mwo= ‘Aapou ‘Adpou ‘aAapou 8S U
/v 0 = s70su0D - ! 1 AB@pou ‘Adpou ‘aapou ¢ ¢ Leo
%/ 0 ‘AdpTINU ‘T3IdOTTY ‘B3ITam ‘ Tata ‘usdory o
TAMTY ‘peaary ‘@asold7y ‘uadory mmw
} 12
) = []msaapd msaapd 3Jonals mmw
$()T320718Aa *()@37am3a ° ‘ m
()237am3a ‘()pedala MwmmoHum> ‘()uadoda Juy Mmm :
. : 93Famxy ‘()peoda h
. 32 ¢ Ae T ;
()T3%0Fsds ‘()231Tamds Aﬁvvmwuxm ‘(Yuadofs ucw mww 5 1
) ()23ranuw ¢ M = ‘
()TIdOTTA ‘()@3Tam ¢)) iadorn 26
M COpeaaty ‘()5 , yoourno I
X ‘()9soy21y ‘()uadory uy L90
9%0
{ ¢svwo
e s Y m« 01 = 83 5/ ‘Q ‘aAapou ‘aapou .>wvom e
%/ wmux:w mwwummumws ‘ABPTINU ‘AdpIInu Mqo
* g = 11 x/ .o .>wvoc ‘aAdpou ‘aAapou ﬁwo
\« [= Ms x/ .o .>mcoc ‘adpou ‘adpou owc
* 9 M m: x/ .o .>wwo: ‘aapou ‘aspou omc
* ¢ = u; x/ .o .>mnoc ‘adpou ‘aspou] o
\« = 21 x/ .o Adpou ‘aAdpou ‘aAdpou oo
\« € = WI y/ .o ‘aAdpou ‘Aapou ‘aAdpou o
¥ 2 = wu %/ ‘0 ‘aspou ‘adpou ‘aspou e
/¥ 1 = da 4/ ‘0 ‘adpou ‘aAdpou ‘aapou Mmm
Z 23eyg *o
3a°0*2/3u0d/8L8/ BTFd ¥d2anog jo Bujlisy
mwmﬁ 9¢:91 8 93a

o ——,
L i
- - S -

¥

I

:

N

¢ [D0UdN])d0ad 20ad 3d2na3s 660 5

tueyoxdu = () (xdupiy) uy 860 .
t()ueydxdu uy L60

t[dd0oNIi]opout 2poul 3Id2na3s 960 -
$[4T1aN]21T3 91F3 139n13s $60
‘ldndN]3Ing jnq 3dna3s 760
€60
‘glL8 = demsu _3uy 260
o = ordms 3 appep 160
‘1 = dsypru IUF U600
(0 ‘g)ropO)Yrw = Adpodid 3uy 640
(1 ‘g)Aoporyrw = Adpdems Juy 880
(0 ‘6)A9p3BW = ADPIOOI Jug L&0
A 980
0 S80
/¥ 0 »/ ‘3ae1s31 ‘andurdkiy ‘avpou ‘ad37am33 ‘peaxi3l ‘aAapTrnu ‘uadolil %80
} €80

= []mssuyy msaujyy 3IONI3S 280 s
£()axeasaa ‘()andugrfiz ‘()237ami3 ‘()peaa3z3 ‘()asord£33 ‘()uadodi3 Jug 150 ~
080
{ 6L0
0 ¥L0
Jv TT = 8A 4/ ‘Q ‘A@pPTINU ‘T130013A ‘9372m3a ‘peOI¥A ‘25072dA ‘uadola LLO
. J¥ 1T = 2P x/ ‘0 ‘A9@pyINU ‘AdpOou ‘adpou ‘aAdpou ‘aAdpou ‘A3apou 9L0
W /% 07 = 831 x/ ‘0 ‘AspyInu ‘A2pou ‘aA3pou ‘a3pou ‘adpou ‘aspou $L0
/¥ 61 = A4 »/ ‘0 ‘aA@prInu ‘Adpou ‘B3Tasdqy ‘peaadqy ‘AIpT[nU ‘Adp[Inu %¢L0
/¥ 81 = T3 5/ ‘Q ‘AdpyInu ‘ad@pou ‘Adpou ‘A3pou ‘adpou ‘aapou €40
[L1 = £33 yx/ ‘0 ‘Adprinu ‘T[300Fsds ‘B317amds ‘peaads ‘aaprinu ‘uadods ZL0
boE /% 9T = np x/ ‘0 ‘aapyinu ‘a3pou ‘aspou ‘aspou ‘a3pou ‘aapou 140
- /¥ ST = 34 4/ ‘Q ‘A8prTInu ‘aAdpou ‘avpou ‘AdpoOU ‘Adpou ‘A3pou 0L0
Pt [/ 91 = dy x/ ‘o ‘A2prInu ‘Aapou ‘adpou ‘aAdpou ‘adpou A3dpou 690
!B /x €1 = Sy yx/ ‘0 ‘A°pIINU ‘Aapou ‘Adpou ‘Aapou ‘adpou ‘adpou 890
; Jx T1 = wl 4/ ‘0 ‘AdprInu ‘Ad3pou ‘Adpou ‘aAdpou ‘adpou ‘A’lpou L90
¢ 93eq 8A°2°d/3u00/8Ls8/ B3TFd @2ano0§ 30 Yuyasy sad

1861 9¢€:91 ¥

-~

- e

PV ST D= . o

SR A AP N DT Y A

Lo on,ot v a7

v MRS o A Ll b e s T B0 <

T g T

% 98evyg

o
Vo)
—
3 TPuay §0T10
tdidoey dpoutr 3Idnx3s %010
tgng3ooe 2% 30nx3s €010
ais 3¥g ¢010
. tISTTe9azq Jnq 3o°na3s 1010
*{IX4IN]3Ixa3 3x23 3Idma3s QQ10

w>.u.u\u=oo\m»m\ 9TTJd @2anog jJo SujliIsyq 1861 9¢€:9y1 g 922aq

Rt e S e it 4

o a) . R A dena g g
. e ot aaciy 1, e B , aalli b

. f T e vt o A i, et i B N ey v 5 S et o
>

:7. ‘
Appendix D: Listings of Driver Source Files
/sys/h.vg.h and /sys/dev/vg.c
The VG device driver source code is located in two
files; /sys/h/vg.h and /sys/dev/vg.c. These files contailn

the final version of the device driver software.

REE G op I o o &0 yp Y

i PR

o%9LL10 ¥dvV duyrjzapy £Eeo
"00%€910 1VLIS_DA dUTjapy €0
90%€910 dVH_OA durjapy 1€0
70%7€910 VLIVA_OA dUtjapy 0€0
COY€910 ILNOD DA 2utrjapy 620

0000010 JOIdN dugpjapy 8¢C0
000020 dHOId Purjoapy Leo
0000%0 00 duyr3japy 9¢0

0010 ONILIVM durjapy (R AY
O0%0 ONINNNY 2UT3apy %20
4 d3dd1s 2uriapy €C0

1 NIdO duiiapy 220
_ 120
000070 3ITUT 3A dujrjapy 020
70910 §83 QUTJapy 610
L0910 PqQy Buiiapy 810
70910 qip duyjapy {10 _
10910 L3ip @2uyrjapy 910 ~
00910 _X3Ip PUFFaIpPy ¢10 -
10910 q Nq1 duyjapy 710
ditr 8A jFba 8a dutTJopy €10
00020 28ueyd 1 auyjyapy Z10

0000010 d¥¥_3a durjapy 110
0000%0 dyo 8a auyjapy 010
60

_ 80

000090 SEW qI dUTIIP§ Lo
01000 39821 3uyrjapy 90
00%10 938nqx duyjapy 4]

01000 132 3ufzapy 20
¢0%00 Isndop 3utjyapy €0
00%00 T3dp 3urjiapy (44

. 10

1 98eg Yy+3a/y/sds/ 91F4d 9d2an0os aaafag 1861 €Z:20 0Z 3da

-l - - . - - S R e e R R e A e F e

Z2 98egq

1100 iels

£000 pud

L0%10 iepnqa
90%10 ieunqa
0o0o0%vo0 joejuyg
000010 @Iqeusjug
000 snd d9
¢00 LINO_QOdD
%700 LINA nEd
¥v0 NOILONNA
{90 qidvodas X
0%0 1374vViva

/% 8103123A 3dnxasjug

Y*3a/y/sde/ I[Fd ¥21n0s x3ATaQ

Aurjyapy
Jurjapy
duyijopy
durjopy
FuT3IoPY
durjoapy

surjapy
sutjapg
dur3japy

d:«uuv‘

Ul yopy
Uﬂﬂuﬂv\

s/

990
$90
790
£90
290
190
090
650
850
LSO
90
c¢o
VALY
€S0
A4
150
0s0
670
870
L90
990
1 RAY
270
£Evo
'A Y
170
0%0
60
8t o
LEO
9¢0
Sto
veo

1861 0€:20 0T 22a

172

{ {821 aJuy
HE tzaofem p awyd ftlouym p aeyd
¢ (334qQ1Y4y awvyd f23£qof aeys

t{9]arunda (
tdooad 8ay 3Juy
fsnje3ys juy

$0F I8FTIO 3Io0nia3gs
} dna3sd

/3 UOTIBPWIOJUT BDFAIP I0ufw JTe Suyjpuey Lea

f{yseuwy

MLAE-LYA VAR
::.uoun\:\..:
AN SEVATY AR
Jataesn/ y e,
WA ITP/Yle
..‘tuﬂHOU\‘\. Q.-
JAcIngq/yyee
JYyrwmeaed/yyse -

/+ s3 ‘qy ‘3p *d3
/UOTIPIIPTEUOD OJUT S83IDIFASIP IOUTW [BISIADS8 93)BI ISNW 13[PuBY SIY]
08837013 [BRIAUISH 103123 103 I3[puey

¢ 98eq 9°8a/a3p/sfs/ 91T4d @2anog a3ATaqQ 1861 L€:Z0 0Z 2924

w IAIniys

w Io2nays

} 3ona3se

A JIO2NaYS

i uy g/

Uur3Ip 3ut

apnyoury
apnyaury
apniduTyy
apnyduyry
3pnNIOuUTy
apnyouyy
apniduyy
apnyouyy

»/

660
860
L60
960
$60
%60
€60
¢60
160
060
680
880
(80
980
$80
80
€80
80
180
080
6.0
8.0
LLO
9.0
L0
%L0
€L0
(44"
1L0
00
690
890
L90

173

T S O it 6t oAk Wi A AN AR\ 5 it 34

fjeaaq 1€10
f()3aeisaind3 0€10
th- 988D 6210 =
{jeaaq 8¢10
$()agends L210 (-
ig- 98sed 910
tjyeaaq sZ10 -
t()ras¥ngy %210 .
:7- 98B €210
fjeaiq TT10
t(da+4+y “3BPNQI)IN0d 1c10
$(dA4+4y ‘IBONQI)INOJ 0z10
. t{- 9sed 6110
}{(day) yd311ms 8110
$(dn44)PIaomIng « (Z+dA)y L110
f(dngqd)promnrng = (1+da)y 9110 =
t(dn)paontny = da, S110 ™
$()L1ds 2110
:dl3S2011 @°8% €110
ijeaxq Z110
t(day ‘dn)paomyns 1110
$(day)NTId = day 0110
{(dn)paonyny = da, 6010
:dLI9001I1 @se?d 8010
, } (puewwod) yd23yas Lo1o
_ t{z]81e n°n &« dn 9010
‘A = da $010
: tda, ‘dn, 1931878921 9010
tlgla 2ug €010
} [AVA QY]
_ ‘puewWWoOd ‘aAdp Juy 1010

(puemwod‘A3p)£33838A 0010

y 98wy 2:3Aa/A3p/8L8/ STTJ 92an0§ a3Aataq 1861 1%:20 0T °%a

S N Y .) R TITTIITTTTTITIN v e

iaaciaodod s o RO _ . - sl e bl dsatid (i S SLOARA s il =

vyl i s
PRt i Wb

Ceasadoths s

e e

2 i ..

¢ 98egq

i S TR S

2°8Aa/A9p/8L8/ I[T4d @20anog adAaTx(

ijyedaq

8 | NIdO = 8sn3eis-[iouyuw p-aap]iyunda

f(dn)paonjny = 8
:dldsSd01Il ?s8ed
tyeaaq
¢(s ‘dn)paomyns
f8n3e3Is° [I0UTW P Aap)IFundA = 8
:dld92011L @28%e2
} (puewwod)ysd33yms
‘{z]8ae n°n & dn
¢dn, a2931878ax
‘g Jug

}

fpuvuwWOd ‘A3p 3juj
(puvmwod ‘A3p)£313383pqysy

{
fjeaaq
fuanyaa
t(,u\pmd paziudodoazun,)yjujad
P3gnezsp
tyeaaq
*()otds
{
iyeaxq
‘((1+da)y ‘day)inod
. t3Inezap
{3eaaq
$(1+dA)y = yseWIuUTIP
. ¢~ 988D

€910
9910
€910
Z910
1910
0910
6S10
8s10
LST0
9S10
€10
%610
€S10
Zs10
1510
0S10
6710
8%10
LY10
9%10
svio0
7910
tv10
710
1%10
ov1io
610
8E10
LETO
9¢10
SE10
ye10
€El10

1861 19:20 oz 24’

175

i s

oL

B a8 i Y PG 1 1M i N et AT o = e

N b g e e S e e e = by s >

/¥ NId »/ { 8610
_ t32a¢-v1va_oA uiniaz L610
‘/% du0p 103 3ITPA 4/ (dFT 3A 3 821¢-1INOD DA) 2TTuUa 9610

tarqeuajuy | yba 3a | @8ueyd a | (££L10 % YALSIOAY) = 831¢-ILNOD 9A } S610
‘¥3LSIOIY Uy 7610
(¥431SISIY)INId €610

610

1610

0610

_ /x 100d x/ { 6810

(/s 2uop TTIUN 3FEM 4/ (dF0 3Aa 3 Z31K-INOD DA) 2TIYm 8810
'ANTIVA = 33a¢-VIVA_9A L810

‘arqeusjuy | 33uwvyd I | (LLL10 9 YILSIODIY) = 831K-INOD 94 } 9810
(ANTIVA ‘Y3LSIOAY IUT $810

(2nIVA ‘¥3LSIOAY¥)INOG v¥810

€810

2810

1810

l% 0810
jenuem HA UF pP9qTaI83p NId X0 1n0od uogjidouny ay3 Ehouhma NId Pue 1010d ¥ 6210

82UTINOI pasn LTuUoBWOD 4 g8L10

%/ LLio

9L10

SL10

2L10

€LT10

¢L10

1L10

{ o¢s10

{ 6910

tyeaaq 8910
fuanzaa 1910
t3gnezap 9910

176

9 98wg d°8a/A3p/shs8/ 31T4d 9danog a3Aataq 1861 96:20 0Z 293¢

- T T e e s ey o ae [,

FRE S S

o B Pt 11720 stnon e " " T —p L ——

- { 1€20

h /v 83dn1x33uy 31qEUd 4/ ‘(10 ‘qap)lnod 0€20
$[)JA®P3A msAdpD 3IONIIS UIIIXI |} 6220

()3aeasap 8220

I%44\;

9Z20

{ 6220

/% 3933I0q Ysnyy 4/ ¢ (0 =< (0F¥°[1]3yundag)d333) aTrym %220

/« 83dn1a33uy 21QqeSIP 4/ (o ‘qip)lnod €220
t{]A9p3a msa3pPd 3IONIIS UWIIIXD } 72220

()asor23p 1220

0zzo

6120

8120

{ L120

9120

t()iaeasap S120

{L10=)Sewluyip } 120

(Juadoap ¢1zo0

- : Z120
3 1120
; /» aarpuey 327qe3 BIEP 9HA %/ 0120
_ 6020
8020

L020

9020

$020

%020

- - { ¢€ozo

¢ /» 3TE8A 4/ (OSPW I =] (fSPW QI ¥ (D2ISNQIA)NIJ)) °TFya 7020
f(39saa‘23asnqa)rlnod 1020

. } 0020

: ()ldasy¥ngy 6610

e+ T

B ciamailatiiat

T e

VRO BRI e ek

177

L 98®g 9+8A/A9p/8L8/ S1F4d 90aIN0§ 13ATIQ 1861 LO:€0 0Z °2a

JESSEEESU SNIS ¢ e g mean e [P S — - - - - - - - SR - - — e s i S 2 e et v e e e ——a——— -

s OPE T - . . N) ’ . . .y IS SR A Y . . .

— e " Gecal i g FeTT———" I A

N T e T B YL

{ %920
t()araeysap €920
{ Z9¢0
$(or [1]3vunday ‘234qyy-4£qap)orand 1920
t(or-[1]3vunday ‘@34qor-4£q3p)d3nd 0920
$(or - [1)3runday ‘234qyy-xq3ip)aind 6SZ0
f(or*[1)3Tundany ‘234qo7°xq3p)d3nd 8520
$(oF°[1)3aTun8any *“@34qFy-snieis)doind 1SZ0
$(or{1]37un8ay ‘@34qo7*snyeas)dind 9620
‘90 << (L3ap)NId = £q3p §SZ0
‘90 << (X3IP)NIJ = x%q3p %520
} (ASBWIUTIP =9 SNIEIS) IT €620
‘1<<(93P)NId = sniels TsZ0
fsnjels ‘4£qip ‘xqip 3Jurg } 1520
()x3urap 0sZo
6%2C

8%70 ©

{ veo &
{ 9%20
{(2)ossed S%Z0
_ (01 [1]37un3A9)2328 « %920
} (0 ¢ 29 2*0F*[1)3Tunda) %9 Junod n°n) aTFYym €920
- _ %20
{90 ¥ IUNOD N*°N = JUNOD N°N I1%20
0%Z0
t()ords 6€20
8€CO

€0 Jufy aa3ysy8aax } LEZO

()ped2a3p 9¢¢C0

SezZo

- %€20

{ $0I3 = 20329 nen } €€Z0
()?3ramap T€T0

2+3A/A3p/8L8/ BT1F4 9d2an0g I3ATiQ 1861 €1:%0 0Z °2d

f0IF = 103212 n-°n 9620

:(0000%0‘Pad)LN0Od 8820 8
${]a2p38a msAaapd 30n338 uwiajxa {820

/+ 83dnix3ajuy ayqeus

/% 3933INQ yYSNT3./¢ (0 =¢ (o1 [z)3arun8ay)o32a8)aryym 6220

‘(o‘Pa%)inodg 8L20
$[)a2p8A msaapd> 319n138s uiaixa } LLZ0

f()raeasqy } 0¢L2Zo

1aypuey paeoqday 9, x/ $92Z0 - :

2:8a/a2p/8L8/ BT¥43 3daNn0g a8AtaqQ

{ L620 ﬂ

} $620
()93%amqy 7620
€620

2620

1620
0620 .

{ 6820 !

} 9870
()3aeasqy $BZO ‘
Y820 i

€820 .

7820

1820

{ 0820

g e

179
¥

()asoraqy 920
SLZ0

%120

€L20

T4

{ 1120

()uadoqy 6920
8920
L920
9920

1861 €1:90 0Z 99q

g s = T e e o

S . K gl S o

AD=ALL5 582 AIR FORCE INST OF TECH WRIGNT=PATTERSON AFB OH SCHOO--ETC F/¢ 9/2 “
A uix n:sgnsuxzcs DRIVER FOR THE VECTOR GENERAL 380% GRAPHICS~=£TC(U) B
uncusstmp AFIT/6CS/MA/8106 ‘

f()iaeasqy

(o1 [z)3fundag‘n)oand

$LLE0 9 (PAAINIA = D

t[]a9p8a msA®pPO IONIIS uUIIIXD
‘0 Juyr 1931s8j3aa)

()33urqy

{
:3(nejap
ftuaniaa

3 :_%00\. 3sed
_ :_u_ 9sed

}(2) ud3ams

: t(p)ossed

! £,u\, = 2 (.ST0\. == 2)_JF

; }J(t~ =1 ((oF*[z]atundag)o308 =« 9) 99 3unod nen) aryya
}(3unod nen) aTyys

t()otds
{0 3uy 29318y8ax }

()peaaqy

0£€0
670
8Z¢t0
Leeo
9Z¢0
§Ce0
2%¢0
(XA
[X4%Y
12¢0
0zto
61t0
81¢t0
L1E0
91¢0
§1¢eo0
71¢€0
€ieo
Zieo
11¢€0
01¢0
60t 0
80¢€o0
L0oco
90t 0
S0L0
200
£0E0
¢0e0
10€0
00€0
6620
8620

01 28eyg 92+8A/A2p/8h8/ o114 991nog 19Atag 1861 9€:€0 0Z 234

180

e S a2 Tdlo SV 5

€9€0 3

- { 9¢co

f0Id=a0239 n°n 19¢€0 .

} 09€0

()231am83 6S€0

8S€0

LSE0

_ 95€0
{ $S€0

t(s005s0°7+883)1n0d %S€0
} £S€0

()3ae3isey Zs€0

16€0

0S€0

6%€0

{ 8Y€0

/v X333INQ ysni3y 4/ (0 =< (0¥ [g]arundag)d3ad)aryyam L%€0
‘(o‘z+s83)1n0d 9%€0

} S%€0

()aso12983 99€0

£9€0

Z9€0

1%€0

{ O%EO

$()3aeissy 6€€0

-} 8€€0

()uadosy LEEO _

9€€0 :

SEEO by

% %€€0 :

22T7A9p Induy X0Q {YI3ITmMS UOTIDURF 3yl ST STYI €€E€0
90FAIP 883 4 Z€€0

s/ 1€E€0

181

11 9?8eyg 9+8Aa/A9p/8L8/ BTT4 9922N0S IAATIQ 1861 €1:90 0Z °9a

IO | W R AR AT O T

Sen e trpen

Cenin

BT N R P s TRt

IR

96€0

S6E0

96€0

£6€0

{ 26€0

{ 16€0

$(INNOD : 9T+INNOD ¢ d)ossed 06€0

{ 68€0

{4+ INNOD 88€0

1 =< 119 L8EO

}((9T > INAOD) %9 (1I€ % D)i) @TTya 98¢0

‘0 = INNOD GB8€O

‘0000010 = 119 98€0

‘Vlvd = 2 €8€0

Z8€0

/¥ 18€0

‘ejep jo 234q 4 08€£0
381F3 uo Suypuadap ssnyea SsE 1€ 48noayy g 3939 ¥ 6LE0 .&
03 sonyea jo 33uea x1adoad ojuy Ind uayil 8L€0 ~

G1 pPue (u39mi3aq 198a33UT UEP 03 13AU0D 4/ LLED

9L€0

‘(oF° [g)laTunBan)d323 = 234qFIY°VIVQ SLEO

$(or° [glarun8ag)0328 = 334qOoT°Viva 9L€0

_ ‘(or°(glarundan)233d = B €LE0

} (0 =i 92 2-071-[g]lafunda) 9% 3Junod n°n) BrFym TLEO

1L€0

‘(Jotds 0L€0

69€0

f[]aop8a msadapd IONaIIS uUIIIXI 89€0

{INNOD ‘D Jug L9€0

119 ‘D pau8ysun 293831892 99¢€0

‘viva paudgysun } ¢9g0
(Jpeaasy y9¢g0

21 98eg 9°8Aa/adp/8Ls/ 2TTJ 292n0§ a3AaTaqQ A 1861 €1:%0 0Z °9q

|

/v @3uel 13m07 10 13ddn 103 SeyI 4/

€1 38eq

d+8A/Aaap/8h8/ BTTL ¥dxN0§ 1IdATAQ

t()iaeaissy
(or°[¢glarun8ag‘azdqry-p)aind
(o¥°[glarun3ag*ajfqor-p)oInd
(0T [glarundag‘aizLfqor-d)oand
{

el sm owm

nﬁlo
(1+883)NId = D
}asta
- t(88J)NId = D
(00010 ¥ (Z+883)NIJ) 3IT¥

uOlo

D¢y 3ug }
()a3juysy

6Cv0 -
8290
Levo
9240
STv0
XA L
£EIv0
X4 A
12%0
0¢%0
61%0
81%0
L(1yo
91%0
S1%0
y1%0
£1%0
rAS LY
11%0
01%0
60%0
80%0
L0%0
90%0
S0%0
vovo0
€070
¢o%0
10%0
00%0
66€0
86t 0
L6E0

183

1861 6%:€0 0Z 33a

IS

®

B pAe A <o

: R |
3238§321 ssaappe aseq dn jas tdey = 39a¢-4vd 9A
/s /
$1-(L<<(L2T4+3%2]L)) =4 de
/%
883d%01d 30 3831 ayl
YiTs d2ovds utr snon3rjuod aq
Jou Lew YdIyya Laowam jo afed _ _
430232 3yl Juem 3 _uop 3a UIYI 4/ (TIAN =i (d3Ixa3 d¢-dooad n°n = 3Ixa1))JT
: {4dV = de
/» pduddo 049 13A3uUdYM IZTTBFITUT 5/ 000020 =323¢~INOD 9A
$(N201S|SXSS) =] 8er3 d¢-dooad n-n
/v 3uyddems 3juaa’ad 03 19pi0 uy 3100 ojuy ssadoxd ay3y ydog %/
tdey “3x31 3uy.
)
(3ey3‘Aap)uadods

. /

L1omam uy snondfluod 2q pur 2102 Uy pajyo01 aq isnu ssav>oxad :gION
2302 O03juy $83201d ® D07 031 Aem ay3l Lrujeu aIie g§ajouapuadap umaisds
9A @43 Jo uojixod nd3 aya saypuey SFY3

9VFAdpP 14D

X £ X X & £ %

2°8Aa/a9p/8d8/ ITT4d 92anog adatag 1861 6Vv:€0 Q¢ 99g

AV R % 3

29%0
19920
09%0 3
6S%0
86v0
(S0
9¢%0
SSv0
%S%0
£€Sv0
Z8Y0
16v0
0svo
69%0
8%%0
{990
9%%0
S%%0
%90 ,
£EYvo *
770

1y%0
o%%0
6E%0
g8Ev0
LEYRO
9¢v0
St£Y90
Ye%0
€EYvO
¢EY0
1€%0 '
Q€Yo

¥

184

T e——-

S670
96%0
£6Y0

1(ND011S|SASS). =3 F8[3 d¢-ddozd n-n A mmww
$(0000%0°132P)1Nn0d 0690
{(000000°‘PBD)1n0d 68%0

} 8890

()asoyads8 L8%0

98%0

! . $8%0
‘ 9890
£8%0

. . _ { Z8%0

. +0]d=I0329 NN ~w¢°
} 08%0

()?37amdd 6L%0

8.%0

LLwo

. 9.%0

{ SL%0

{44138330 n*n m Lo

f(234q1y° yivg)ossed MMNW

xuuhnoa.fatnvummmn 1.%0

. $(3ePNQa)NId = VIVQ 0L%0
i) {(398330 n n‘zeunqa)inod 6990
; }(3unod n+n) ayyyam 89%0
. {-- @8®q _n°n ({9 3Iseq n'n) 3y MNWM
{«=3UNnO0d ne+n ([%3uUNO0Dd n°n) 3§ $9%0

‘vlva uyr) v9%0

()peaaqa €9v0

e = A A s e 3 A ™ A

185

g1 98eg 3°8a/A9p/8ds) I714 9danog adataqg 1861 8S:€0 0Z >%¢

-
i d ot cutunn S R

ke it b i ik o Py,

{ 8260

{ LTS0

‘jeaaq 92¢0

/% dFued ® UO IZFTBFITUT 4/ {000Z0 = 32a¢-INOD 9A ¢Zso0
fC(ETOINIA‘(vOINId‘(I®IB)NId ,u\Ooy 0oy - [og] 3dnixd3juy n49,)33ugad %2S0
€260

:ATneyop Zeso

1260

_ tyeaaq 0Z50

t(g*dooxd 8a*[p]3junda)teudysd 6150

/% 8160

4Sn ION 0Q ‘swdrqoad 3aempaBH :HNINYVM -- 9pOm 3dea] L1S0
%/ 91¢0

t€Z0 ?8sed §160

uNNO o8ed 2160

€150

tyeaaq _ 150

{ 1160

¢()ilae3saand3 01S0

ONILIVM =| sniels*[g]ajunda 6050
}@s12 8050

unow.ﬁouuﬁ==w>wva=mxm3 LOSO
-(d3d1s % snieis-[g)jarunda) 37 9050
‘ONINNAY. =% sniels-{g]arunda €060
:L10 3¥s®D %050

:100 ?sed €050

20S0

}((3®38)NId = 23®38) yd3iyms 1050

00S0
¢()i3avasaandd uaaixd 66%0

9338 JUf 133sydaa 86%0
} L6%0
()x3urdd ggv0

186

91 #8eg d+8a/a9p/8L8/ 31T4 ddan0§ adATaqQ 1861 8S:€0 0Z 293¢

1960
090
{ 6550
‘NFdO =| msuwum._uocqev_u«cww> 8SS0
/s 83dnii1s3uy drqeUd PUV IZTTRTITUT 4/ noanm:wucw =| 323¢-1LNOD 9A LSS0
_ f()(uado_p*[Iouyup]aapday) 9650
¢dd0ad n°n =« dooxd 8a*[aoujwp]3iFunda ¢SS0
{ %650
fuaniaa €660
‘0Id = 103119 n*n 2550
/+ 20112 uado ue 83T 4/ } (N3O % usuuuu.muoW«Ev_u«==w>v 3T 1650
. {IouTwW pcaAdp = AOUTWPp 06S0
fioujwp 3Juy 133s8jy8aax) 6%50
(Ber3‘*adp)uadola 8%60
L%S0
9%S0
4 S%S0 ~—
i 7%S0 @
“ . H 0 €950 -
i ‘O ‘0 ‘£3318s3pqiys3yy ‘@3Tamsyy ‘pedaasyy ‘aso[dsjy ‘uadosyy %S0
4 ‘0 ‘0 “£3313s3pqysJIy ‘@3vamqiy ‘peaaqiyy ‘asordqyy ‘uadoqyy 1960
M ‘O ‘0 ‘£338s3pqys3yy ‘d37am3Ipy ‘ped13Ipy ‘asord3py ‘uadoilpy 0%50
‘O ‘0 “4£118s3A9 ‘931T7amd3y ‘peaiqay ‘9so7dd3y ‘uadodfy} 6€S0
= []aap8Aa msa2dpd 3I0n23s 8€60
4 LESO
; 9¢S0
, SESO
/» %€S0
8§90 TAPpP I0UTW 9Q O3 SIDTAIP QN8 T[T®e €€SO
” SuymorIe puw saaqunu IOFA3p aofew jJo 3Jo] ® JufAavy PFOA® 03 BT SIYL « Z€S0
» 1¢60
: TBI3U3H 1031237 IYI I03 3DFAIP O27aduad Ay3 97 « 0€SO0
. %/ 6250
N L1 °8weg 9*8a/a9p/8L8/ ITTJ I2IN0§ IIATIQ 1861 €1:90 0Z 22a
i
!

%650

i €650

: 2650

y: 1650

: { 0650

‘0 = snyels- [aougup]iyunda 6850

H !97qeud3IUT »| F21¢~INOD DA 8850

N £()(380T2 p-[aougup]aapBay) L8S0

-} SIOUTW P AP = IO0OUTWP 9860

& ‘Joujwp 3Juy 1231sy8ax } $8S0

ww (Aa@p)a2so123a ¥860

WM €8S0

B ¢85S0

3 1860

H 084S0

1 _ 1 etso
i $91qeuaIUT | 821¢-INOD 94 8L50 ©
f()(331am prlaoutuplaaplay) LLS0 m

$I0UTW P AP = IOUTWP 9¢S0

: {()ords SLSO

f{aoutwp juy 23381323z } %160

(adp)d37am3a €250

TLs0

1.S0

0LS0

69¢0

- {8950

'9TqrRUAIUT «| 3DIC-INOD DA L950

f()(peax pe[ioujupjaaplay) 9950

‘{aougm p-A@p = a0uTWP €960

f()otds %950

faoutmp Juy 293387332 } €950

(a2p)peaada 7960

g1 °8eg 2+:8a/a3p/8Ls/ aTTd @dano§ aaatag 1861 £1:90 0z d%a

. e e - -

{ L290
t()oxds 9290
{yoeUT(dTqEUIIUT | 831¢-INOD OA $290
N _ { 9290 !
; /#UOFITPUOD peq 34yl 1BITD 4/ 000020 = 821¢-INOD 9A €290 L
i} t((3sndop)NTd‘(3®IS)NIg BUOYITYM’ ,u\oy Oy : [ox]) - ¥YIDA.)JFIuFad ti90
38 :3Tne3ap 1290
H 0290 :
i 6190
i tyeaaq 8190
W £()ajuyds (190
H. :1LINR 049 9s®d 9190
v $190
3 iyeaaq 190
i _ f()xauysy €190
! ‘NOILONNJ os®d 2190
1190 o
tjeaaq 0190 ©
£()a3urqy 6090 ~
:QdvogAIN 988D . 8090
£090
tyeazq 9090
f()xaugap $090
$1ITEVIVQ @8®d %090
€090
tyeaaq 2090
:$nd do 9ased 1090
0090
/» @@ vouasuu0u=« 30TFASP YOTYm PuUf3F 4/ v Aunozuﬁsav Yyo231yms 66S0
_ t()trds 8650
1 << 33a¢-1V1IS 9A = duoyaryam L6S0

auoydrym Juy 1938y89x | 96S0
(Aap)3urBa €6S0

61 98egq o.w>\>ov\n>u\ 9TF4d ¥%anog 13ataq 1861 €1:90 0Z 29g

T oy g -

LA maa DL o ik P (tblmnbib e e

AVELchaar o A i)

{ 0990
{ 6590 -
£dd317S. =% snieisc[p]ajunda 8590 f
'(L1vMd‘or[0]aTundag)daats LS90
${d3d1S =| snieisc[g]ajunda 9690
}((ONILIVM|ONINNNY) 3 snieas:[g]afunda) 37y $$90
} %590
()3yeads €590
7590
{ 1590
{ 0590
ONILIVM . =% snie3s*[gl3junda 6%90
‘ONINNNY =| snieis°[g]ajunia 8990
$CLeeeto 9 (3HOIA | 09 | (Pw2)NId) ‘Pwd)1nod (%90
{ 9%90
‘(ONILIVM|ONINNNY). =9 snie3is:[g]3junda S$%90
$(o7- [0]3aFun3ag)dnayea %990 o
/% £%90 o
Ysaajaa 3103aq umeap 9q 03 c9790 l
8I03D3A TEBIDIAIS MOTI® PINOYS . 1990
STTED walsds pue g9 dn 0%90
poads 03 ased TeIdads 6€90
x/ 8€90 w
}(d331s 3 snieis-[g]ayunda) 31 L€90
} ((ONINNQY % snieis-[0]3yunda)j) 37 9€90 !
} s€90 !
()lae3asaand8 9€90 |
€€90
- _ { z€90
f(puBnwod‘Aap)(TIDOT p*[aourm pradplaapday) 1€90
} 0€90
{puemuwod ‘Adp Juy 6290

(pueuwwod‘A3p)T190318a 8290

0z ?3e4g d+8a/aap/8dks/ ATTJ #d21n0§ I3ATaIQ 1861 €1:%0 0z 22a

[I

AP AT WY Po Lot bR Rt g e
» (A i—ragelll P PRS- S i T T % R e i b A M

Appendix E: Listing of File
/sys/conf/makefile
The flle /sys/conf/makeflile 1s used to regenerate the
system during execution of the command "make unix60".
Line 57 specifles the maximum allowable size (in bytes)

| of the system.

191

oyXIun djeuw £€€0

_ Juodsdjyy juodijuw Z€0

T xfunwidi/ § Xjun Auw 1€0

OyXFun ajeuw 0€0

Juodouiday juodyw 620

¥ Xjunu3idy/ } Xjun Aum 820

OyXjun ajeuw L20

Juodw3dyy Juodjyu 920

wu 0403y ¢lo

«iili ¥30m J0u YI¥m s34l ‘assn aadns jo0u 31, oYyday 9Z0

we 0423y €20

:swalsfsyye 7¢0

- - 120

S°PT Yduw s-gyow o-pjy yduU 0~ SE — 0c¢o

§°PF ydu s+ oydu 0°P¥ Youw 610

- ‘ 810

O°% WX PT_QITYW :3°y 0= D= DD ta3p/** pd L10

O°x WX !PT QTFTYW 2°4 Q- - 2 sy po 910

Yeweaed/y/- yepy wexed/ys/+* do s10

S0LTT® GHTT® yylIT® 210

_ €10

0LT1® O%1TT® itte ¢10

110

_ Oy uWa 010
PYI xyun azys 60
_ ww 9433y 80
«1V1I0L = SSE+VIVA+lX3L 8T P} Xjun jo 3zys, oya3y Lo
- _ _ — wu OUD? 90
PY TE1T1/A9P/°° PT 1€171/848/°° 0°D OGP} YdW O FJ~ X~ PJ Xjun o- Py SO
_ we 0Y23y %0
«iliil PT Xyunm paweu aq [I¥A 9[Fj 3Indino syl oqday €0
- _ - we OUYIOG z0
P¥ ZEIT/A9P/°° PT 1411/84L8/°* ©0°3 0°'pT ydm o-] {0LXTUR CyXTun Hexjun xXyun 10

1 3%weyg 31¥33yvu/Juod/sLe/ 314 30 Bujieyq 1861 9€:00 17 23a

192

g

© ey essne

B v re

VTR oo I ke, i R g

8°F Ydu S°QydwWw o0°f you
S°F youw s°Qyouw

T XTu

«1V1IOL = SSE+VIVA+LX3Al SF F XJun jo 3zjs,

Liilli 9168 001 SI XINA ‘S334q ZG16% < F XFunm jo 3zys JI,

¥ z9IT/A9p/°°

T C¢HIT/A9P/*°* T 1911/848/°° 0°F ® 0°F youw 0°F 1 :09XJun gyxyun

Z 98eg

T 1911/848/°° 0*F 9 0°F yosw 0°F [X~ J Xjun

wilill ¥ XJun paweu aq TT¥A 2[F3F 3Indino ayj,

[T

PF¥ XJuns3ita/ py x
0LXTU

juods3itay
PF XFpunsiajyy/ py X
0LXTU

JuoasiIyyy
PT xucssuau\ PT X
0LXFu

Juodmida)
P¥ xjunaydy;/ pr x
0LXTU

Juodaydyy

T Xjuns3fa/ J x
Oyx¥u

o- se
:0°7 yom

0°x wa
n 2zys
oyday
oy29y
oyday
oyday
oyo3y
o- Pl
oyo93y
oyosay
oyo9py
yEXFUN gZXFUN

Jun aAm
n ayea
juodjym
Fun aAuw
n ajyeuw
Juodu
Jun au
n ayea
Juooyu
Jun aam
n ajeum
juodyum
Jun Au
n ajeuw

JUOdS3ITa) Juodyu

T XjunsIyy/ 7§ X

@1F73anem/Juod/sL8/ 9TFJ Jo Bujisy

Jun Auw

1861 %€:00 1Z 92a

990
$90
790
€90
t90
190
090
650
860
Lso
9¢0
S0
ALY
€S0
tso
1s0
0S0
6%0
8%0
(%0
9%0
$vo
%0
tvo
(AL
170
0ovo
6¢0
8¢O0
LEO
9¢t0
s€o
veo

- e .

193

. ———- - MR

. gy

A e S—ro———

¢ #8eg

2*2 Q- 9= 292
yeweaed/y/ - y°py wezed/ys-* do
2+ :0°2
8°T [O°F [0- se
S*°FT [8°T 319Au0D
_ 81 :0°7 1
0°F 9 0°D Am
3°3 Q- 9- 23
yewesed/y/cc y*y weaed/y/ - do _
2°D :0°F 9

O°y @I ! J QITAW ¢ d°y 0= 9~ D3 ¢ AP/ * PD
O° @3 ! F QITAW ! Dy Q- O~ 2D ¢ sL8/** P23
yrweaed/y/-+ 4°y weaed/y/+* do

i09T1% O9IT® HEIT® £ZTTI®

aTF3oNPu/Juod/8ks/ °1Fg 3o BuyIsyq

80
180
080
6L0
BLO
Lo
9.0
$L0
2.0
£L0
iL0
120
0L0
690
890
L90

1861 ¥€:00 1Z 93¢

194

TR TN 15 * SIS 00 K g iz

Appendix F: Creation of Special Files for the
VG Graphics Device
Before Create Special Files After
. f 18 /dev # cd /dev f 1ls /dev
console # /etc/mknod gpu ¢ 22 0 console
kmen # /etc/oknod dtb ¢ 22 1 dtb
1p # /etc/mknod kbd ¢ 22 2 fss
makefile ¥ /etc/mknod fss ¢ 22 3 gpu
mem ! kbd
ok_rkO07b v kmem
mt0 1p
mtl makefile
! nrmt0 . mem
nrotl ' mk_rkO07b
null mt-o_
r,tl - mtl
: rmt0 nrme0
i ramtl nrmtl
rp0 null
rpl0 r,tl
rpl3 rmtO
rpl7 rotl
rp3 rp0
rrp0 " rpl0
‘ rrpl0 rpl3
; rrpl3 ‘ o . rpl?
: rrpl? rp3
? repl rrp0
! swap rrplo0
tty rrpl3
tty00 rrpl?
ttyOl rrp3
tty02 swap .
[ttyolt ttyoo
o tty05 ttyo1l
251 tty06 tty02
o § tty0? tty03
o tey08 tty04
N teylo tty06
4 - teyll tty07?
- tetyl2 tey08
= teyl3 | tty09
; teyléd ttylo
teyls : ttyll
ot ttyl3
‘ ttyld
E tetyls
v | vp0
|
: 195

L4

g ——— - wm - e —— RS 801 B YR

I L, e P
e —— e e a——

Coos

R s vmieiali
i e "

T e Tt et 1 1t eivm. TN

Appendix G: Major System Directories

1s /sys/conf
c.c .
c.c.lp
C.C.8avVe
c.c.vg
conf.afit
conf.afit.lp
conf.asd
convert
dtb.c

fss.c
hkhtconf
hktmconf
hktsconf
hphtconf
hptmconf
hptsconf
kbd.c

l.s
l.s.auto
l.s.good
l.s5.1p
l.s.save
l.s.vg

1 1.8
makefile
mchO.s
mch_1i.s
mch_i.s.save
mch_id.s
mkconf
mkconf.c
mkdev_1
mkdev_id
mksys_1
mksys 1id
rlhtconf
rltmconf
rltsconf
rphtconf
rptmconf
rptsconf
unix_ {1
unix_{.save
unix_1d

‘'unixconf
.vg_conf.load

vg_conf.unload
vgtest.c
4

AT e T e T o\ tim v

1s /sys/dev
LIB2 1§
LIB2 i.save
LIB2 i.vg
LIB2_id
bio.c
cat.c
dc-c

dh.c
dhdm.c
dhdm.c.orig
dhdm.c.v7m
dhfdm.c
dkleave.c
dn.c
dsort.c
du.c

dz.c

hk.c

hp.c

ht.c

kl.c

lp.c
mem.c
mklib {1
mklib_id
nmxl.c
mx2.c
partab.c
pkO.c
pkl.c
pk2.c
pkl.c
rf.c

rk.c

rl.c
rl.c.orig
rplc
rx2.c.vim
sys.c
tc.c

tm.cC
ts.¢c
ts.c.o0ld
tty.c
vg.C
vp.c

vs.c

f

1s /sys/h
acct.h
buf.h
callo.h
conf.h
dir.h
dumprestor.h
fblk.h
file.h
filsys.h
ino.h
inode.h
map.h
mount.h
mpx.h

mx.h

pack.h
param.h
param_1i.h
param_i.h.v7m
param_1id.h
pk.h

pk.p

prim.h
proc.h
pwd.h

reg.h

seg.h
smallparam.h
stat.h
stdio.h
systm.h
term.h
text.h
timeb.h
tty.h
types.h
user.h

vg.h

#

196

1s /sys/sys
LIBl_{

" LIB1_id
acct.c
alloc.c
clock.c
fakemx.c

. flo.c

‘iget.c
machdep.c
main.c
malloc.c

‘mklib {1
nklib id
nami.c

plpe.c
prf.c
prim.c

‘rdwri.c
sig.c

"slp.c
subr.c
sysl.c
sys2.c
sys3.c
sysbd.c
sysent.c
text.c
trap.c

‘ureg.c
#

RIS, 0 £ ¥ & 5§

Appendix H: Rebooting the System from
UNIX Object File /unix.vg
This appendix contains a listing of the commands exe-
cuted to reboot the system from UNIX object file /unix.vg.
This rebooting session was accomplished from the system con-
sole. When the session was begun the system was in multi-
user mode with the system console logged in as the "root"

user executing a monitoring loop.

In this example, all commands typed by the systems

programmer are under scored.

Y
d

i
1
!
1
|
!
|

F«

ouks #
ouks g

ERERRRRRRRERRRRRN RN NN RN R 0NE OST R RN R RN N ERANERRRRRRRRRRN RN
T86T ISH 22:G9T1:T2 8T 290 T4d

tLtdaa/asp/
0 Bugsstuw
L16 9343

(2Lh6h=P°0=TTT LE=TTTTI2T=T) LGLOG pasn

. (0=2°0=q°ge2=P“gR0G=I) 9TEG S3TTJ
:l1daa/asp/

T 9ATap ‘wagshs ATy asn/ yoay)

tgdaasasp/

0 Fupsstu

09141 99a3

(098LT=P 0=TTT‘G=TT°80G=T) 8LEQT pasn
0=0°0=Q°88T=P nET=a) 229T S3ITJ

igdaasasp/
0 S9ATJap ‘wajshs aTTJ swoy HoaYy)
€1 cl 4

4Ud NUFT S9fJI3Ua
rodaa/asp/
0 Bupsstu
0lLS 99ag

(GOh8=P 0=TTT Qg=TT 1E2=T) 2598 pasn

(9€=0°g=q°9g=p 15G=a) 129 SaTTJ

:odaa/asp/

0 2ATJADP ‘wajgsds aTTJ 300J HO3Y)H

T86T LSHT 64:TT:TC 8T 99Q TId

BURMANURNRINRNNAN RN RN NN NENE OCSH B RN R R R RN RN ER AR RRRRRERE RN NN
OSJ # #

T 1T~ 1T #

TT:T2 gT 99Q aTOsuUcd 3004

OouM
d Toajuod ® adij

i i e R e

198

Tg6T IS 00:8I:60 R 220 TJ4d
8160812t 23%ED #

6£02 = wow

ASXTUN(0'0)NY
s00g

. 300q #

Vita

Bradley Ray Stewart was born on 5 August 1955 in San
Luis Oblspo, Californla. Bradley graduated witﬁ academic
honors from East Unlion High School, Manteca, California in
1973. He attended Brigham Young University from which he
recelved a Bachelor of Science degree in Computer Technology
in June 1980. Upon graduation, he received a commission in
the USAF through the ROTC program. He then entered the
School of Engineering, Air Force Institute of Technology,
in June 1980.

Permanent address: 1026 Lewis 0QOak Road

Gridley, California 95948

UNCLASSIFIED

SECURITY CLASS'FICATION OF THIS ®BAGE ‘Whan Dats Entered)

REPORT DOCUMENTATION PAGE BEF R R O RN
) 1. REPORT RUNDER 2. GOVT ACCESSION NO.| 3. PECIS' ENT'S CATALOG NUMBER
> AFIT/GCS/MA/81D-6 ASRY / ! .
4. TITLE (and Subtitle) 5. TYFE OF REPCRT & PERIOD COVERED

A UNIX BASED DEVICE DRIVER FOR THE VECTOR

GENERAL 3404 GRAPHICS DISPLAY SYSTEM MS Thesis

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) . 8. CONTRACT OR GRANT NUMBER(s)

Bradley R. Stewart

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::SE;;;EOERLKEM}E:‘TT'NPRMOBJEEé:;. TASK k
Air Force Institute of Technology (AFIT/EN) UNIT Ny ﬁ
Wright-Patterson AFB, Ohio 45433 1

11. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
March, 1982
13_NUMBER OF PAGES

213

16, MONITORING AGENCY NAME & ADDRESS(if diftersnt from Controlling Olfice) 15. SECURITY CLASS. (of this report)
Unclassified !

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; dis;ribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different trom Report)
. Dean for heszarch aad
15 APR 1982 Professional Development

ZJ <. w Q Air Force !nclitete of Technology (ATC)
e Wright-Pallarson AR, OH—45488——

Approi}ef for public release; IAW AFR 190-17

18. SUPPLEMENTARY NOTES

F—C—tYNCH - Majors=USAF
Director 6f information
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
UNIX Vector General 3404
Computer Graphics POP11/60
Peripheral Device I/0
Device Driver

Device Handler
20. ABSTRACT (Continue on reverse aide If necessary and identity by dlock number)

A device driver for the Vector General 3404 Graphics Display System was
installed under the UNIX version seven operating system on a PDP11/60 computer.
This was accomplished by modifying an existing device driver which was designed
to run under version six of the UNIX operating system.

.. The major topics addressed in this report are the C programming language,
! peripheral device 1/0 processing under UNIX, the hardware interface between

| the PDP11/60 and the graphics display system, the graphics display system
DD ,,5n'ys 1473 coimion oF t wov 68 15 osoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entered)

i
_ ' ® *) ’
e N N P T 7 .
P SV 5 BT "W =) ' §

L L1 prtap noes A 8 ST w9 L KA P

| E————— -

! —LNCIASSTFTED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ftself, and the existing device driver software.

Structure charts were used to document the design of the UNIX peripheral
device I/0 processing software and the design of the device driver software.
| Modifications to the original device driver were easily accomplished due to
the top-down modular design of the original software. UNIX provided a
straight-forward interface for adding the device driver software to the system.

= W T TR ET

UNCLASSIFIED

’ SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

